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A global class reunion with multiple 
groups feasting on the declining 
insect smorgasbord
Eero J. Vesterinen1,2*, Kari M. Kaunisto3 & Thomas M. Lilley4

We report a detection of a surprising similarity in the diet of predators across distant phyla. Though 
just a first glimpse into the subject, our discovery contradicts traditional aspects of biology, as the 
earliest notions in ecology have linked the most severe competition of resources with evolutionary 
relatedness. We argue that our finding deserves more research, and propose a plan to reveal more 
information on the current biodiversity loss around the world. While doing so, we expand the recently 
proposed conservation roadmaps into a parallel study of global interaction networks.

Darwin suggested 150 years ago that competition is strongest among closely related species1,2. While this senti-
ment has endured time (but see3,4), it has been challenged by a call to increase attention to interactions between 
phylogenetically distant speciese.g.5. Nowhere is this call more topical than in the context of interactions involving 
insect diet, together with the current worldwide decline in insect numbers and biomass. Where recent research 
has flagged impacts on mutualistic interactions (e.g. pollination6) as a particular concern, we know less about 
effects on antagonistic, trophic interactions. In this paper, we provide tentative evidence that predators separated 
by deep taxonomic divides (birds, bats, and dragonflies) tap into the very same resource setting of insect biomass, 
with widespread sharing of prey taxa. These findings suggest that the current insect decline may resonate widely 
across the tree of life and that a globally concerted effort to trace trophic links from insects across ecosystems 
is urgently needed.

Harvey et al.7 addressed a topical question regarding human-induced invertebrate loss6, 8–11. They formulated 
a global roadmap for insect conservation and hopeful recovery of endangered insect populations7. We wish to 
acknowledge the aforementioned prologue and to offer a complementary view to the biodiversity crisis around 
the planet. As the insects are declining, the insectivores are also in distress12–16. This leads to a notion that, instead 
of focusing solely on insects, we should simultaneously be studying interactions between insectivores and their 
prey17. Here we present the details of our discovery and propose a new, next-generation roadmap to concurrently 
disentangle the diversity of insect communities, their predators, and the resulting network.

Over the very last few decades, multiple studies have pointed to widespread decline among insects7. This 
pattern has been proposed to apply to both species-specific abundances and overall insect biomass and to extend 
across habitats with highly variable levels of human impact6–11, 13,18. This is alarming, given the dominance of 
insects in terms of diversity19 and biomass20, and the key role of insects in sustaining ecosystem processes and 
services5,7. The plight of pollinators has been of particular concern, considering its potential implications for 
plant pollination, crop production, and even vegetation composition6. But additionally, the overall insect decline 
will also affect the plethora of organisms utilizing insects as food. Recently, it has been suggested that many 
insectivores may be declining along with their diminishing prey15. A universal reduction of resources may both 
cause a decline in numbers of predators and change interaction dynamics between predators sharing their diet, 
commonly favoring generalists6.

To predict the consequences of the insect decline through trophic effects, we need to establish who eats whom 
and in what quantities. Very little is still known about the majority of interactions between the predators and their 
prey, in particular, we are lacking data on the diet of most insectivores, although they most likely form the larg-
est guild of predators21. This is a glaring knowledge gap, seeing as both these prey and insectivore communities 
encompass the quantitatively dominant, most species-rich and economically crucial invertebrate organisms on 
Earth—such as Diptera, Lepidoptera, Coleoptera, and Hymenoptera—and vertebrate predators, bats and birds20. 
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When combined, interactions between insect prey and insectivores may be dominant and at the same time most 
severely affected trophic interaction type of the Holocene21.

Where much work has been invested in retracing interactions between given taxa and particular insect prey, 
we argue that the real repercussions of insectivory can only be understood by a phylogenetically wide-spread 
examination of major insectivores—and for links among such taxa. Because multiple predators consume the 
same prey, quantifying the relative importance of each in each habitat is vital to understanding the net function 
of insectivory17. In this study, we offer the first preview into the combined food web of several distantly related 
insectivorous predators, discuss the importance of such synthesis, and offer a roadmap for future research.

Material and methods
To disentangle the shared prey use by multiple predators in one region, we combined data from several studies 
focusing on insectivore-prey relationships as described below. We selected twelve species of insectivores from 
three guilds to assess the dietary similarity of these distantly related groups: European pied flycatcher Ficedula 
hypoleuca (Passeriformes, Sylvatidae) (Pallas, 1764) represents birds, Northern bat Eptesicus nilssonii (Keyser-
ling & Blasius, 1839), Brandt’s bat M. brandtii (Eversmann, 1845), whiskered bat M. mystacinus (Kuhl, 1817), 
Daubenton’s bat Myotis daubentonii (Kuhl, 1817), and Brown long-eared bat Plecotus auritus (Linnaeus, 1758) 
(all species belong to the family Vespertilionidae) represent bats, and the northern bluet Enallagma cyathigerum 
(Charpentier, 1840), spearhead bluet Coenagrion hastulatum (Charpentier, 1825), crescent bluet C. lunulatum 
(Charpentier, 1840), variable bluet C. pulchellum (Vander Linden, 1825) (Odonata, Coenagrionidae), common 
spreadwing Lestes sponsa (Hansemann, 1823) (Lestidae), and black darter Sympetrum danae (Sulzer, 1776) 
(Libellulidae) represent invertebrate aerial predators.

Ficedula hypoleuca chicks and adults were sampled during the summer 2014 in Southwestern Finland. The 
diet was analysed by molecular approach from faeces. Laboratory work closely followed22, with the details in 
the Supplemental information (Supplemental Text 1: Molecular analysis). The bat food web data in the current 
study was adopted from an earlier work, see Vesterinen et al.23,24 for details. Shortly, faecal DNA was extracted 
from bat droppings, and prey DNA was amplified using the same markers as F. hypoleuca samples above. Data 
for the damselflies and dragonflies in the current study was adopted from earlier works, see Kaunisto et al.17,25,26 
and Vesterinen et al. 27 for details. For detailed bioinformatics, see Supplemental Text 2: Bioinformatics. All the 
dietary (bird, bat, and odonate) data were merged together in the subsequent analysis (for full prey species list, 
see Supplemental Text 3: Additional results, Table S1). We calculated the percent of occurrence (POO) by scal-
ing the frequency of each prey item so that the sum across all food items was 100% following28. To visualize the 
trophic interactions, we used package bipartite29 implemented in program R30. We constructed an interaction 
web for three levels of prey, species, families, and orders, and highlighted the most common prey taxa (with at 
least 20% proportion of total frequencies). We analysed sampling adequacy and comparability of the datasets 
by calculating accumulation curves for each predator using the number of individuals and read counts using 
function specaccum in R package vegan31.

Results
We identified altogether 924 prey taxa in 12 distinct predator species (see Supplemental Text 3: Additional 
results, Table S1, Figure S2, Figure S3, and Figure S4). Over 500 of these were shared by at least two predators 
and nearly two hundred by at least four predators. Two species (Lepidoptera, Gelechiidae, Psoricoptera gibbo-
sella and Psocodea, Caeciliusidae, Valenzuela flavidus) were shared by all three guilds, and 64 more by at least 
two guilds. Insectivorous predators mainly used the arthropod orders Diptera and Lepidoptera in their diet, 
and the level of overlap increased towards the higher taxonomic level (from prey species to prey orders; Fig. 1). 
Chironomids (Diptera) were the most common prey group for all predators, and Sciaridae was another very 
important prey family (Fig. 2). At the prey order level, Diptera was found in all predator’s diet with at least 20% 
proportion of occurrences, and Lepidoptera was nearly as common (Fig. 1). The species accumulation curves 
based on read counts showed adequate sequencing depth (Figure S5), but the sampling seemed to have been 
somewhat limited (Figure S6).

As a roadmap for the assessment of insectivorous predators and their prey globally, we constructed a frame-
work for future studies (Fig. 3). This includes the dissection of the diet for each predator (Fig. 3a), quantification 
of the available prey in each habitat (Fig. 3b), combining all the aforementioned data with predator population 
size estimates to end up with predation pressure summaries (Fig. 3c). Finally, we may construct a global synthesis 
of insectivore-prey interaction net effects (Fig. 3d).

Discussion
In the current era of defaunation32, many organisms are declining rapidly12,15,16,33–37, and especially insects are suf-
fering greatly6,8–10,13,18,38,39. This is alarming because we know very little of the fundamental interactions between 
the majority of species. With the current work, we offer the first evidence of a shared menu of distantly related 
predators, with the common denominator being their placement in the guild of insectivores (Figs. 1, 2). While 
reporting our findings, we also propose a roadmap for utilising the latest next-generation techniques to disen-
tangle the global patterns of insectivory (Fig. 3). All the tools to accomplish this task are already available and in 
use, and can be combined with analytical protocols to build a novel synthesis, as outlined in Fig. 3.

Using state-of-the-art molecular tools for detecting trophic links, we report here a key finding: predator taxa, 
separated as far back as the phylum-level, share a major proportion of their prey taxa. This insight contradicts 
traditional wisdom1 because it implies that predators from different branches of the Tree of Life may interact 
with the same prey, and thus, either directly or indirectly with each other. This calls for a new approach to trophic 
biology: rather than applying focus solely on individual predators, predator orders, or even classes, we need to 
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Figure 1.   Food webs of twelve different insectivorous predator species (representing three different guilds) and 
their prey. The diets of three predator guilds: a bird, bats, and dragonflies sensu lato (including all odonates) 
are compared at three levels of taxonomic resolution: the prey species (top), the prey family (middle), and the 
prey order (bottom). The pictures in the upper row represent predators in each web and the blocks in the lower 
row the prey species. The prey is coloured by taxonomic order, as illustrated in the legend below the web. A line 
connecting a predator with a prey represents a predation record detected by molecular tools, and the thickness 
of the line represents the relative proportion of each predation record. For each predator, the prey interactions 
that correspond to at least 20% of the total diet are highlighted as turquoise. For details on methods and original 
data, including full prey species list, see Supplemental Text 3: Additional results. Photo credits: Maija Laaksonen 
(bat drawings), Kari Kaunisto (bird and dragonfly pictures).
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retrace interactions centered on similar prey throughout the ecosystem (Fig. 1). Only thereby can we understand 
the community-wide repercussions of a change in insect biomass and community composition.

As an example of potential outcomes of climate change, we pick a central prey group, non-biting midges 
(Fig. 2), which are widely used as bioindicators of water quality40,41. Aquatic chironomid larvae are characterised 
by synchronous mass-emergence, and their development is a function of temperature42. Thus, it is possible to 
envision a future scenario, where chironomids would either diminish (due to pollution of freshwater) or their 
mass-emergence phenology would shift (due to global warming). We should be asking; what kind of effects might 
arise in the aforementioned consequence? On one hand, the populations of insectivores depending on the lost 
resource would likely suffer and collapse6. This, on the other hand, could lead to a significant increase of harmful 
pest insects, profiting from a decrease in predation pressure21.

While our current results enable only a first glimpse of links between focal insectivores, we believe that they 
point to a general pattern—the details of which can only be filled in by a wider research programme targeting 
the global distribution of insectivory across taxa and regions (Fig. 3). Overall, we should simultaneously quan-
tify the abundance of different predators, their diet, and the composition of available prey. While the proposed 
research scheme would have been considered as utopia just 10 years ago, the tools to accomplish this task are now 
readily available for all the focal groups17, 22,25,43. We can already accurately analyse the diet of various predators, 
including bats22,23,44–46, birds43,47, dragonflies and damselflies17,25, spiders48,49, and a variety of herbivores50–52. Also, 
surveying the available prey (i.e. any insects in the wild; Fig. 3b) is possible and sometimes more cost-efficient 
using molecular tools22. There are also many good suggestions for how to quantify insect biomasses (Fig. 3b), 
besides merely accounting for species richness17, 53–55. Predator identity can be retraced from faeces using DNA 
microsatellites22, and even the population size and density may be estimated directly from non-invasively col-
lected samples56. In certain circumstances, however, it is more efficient to use mark-recapture methods to cal-
culate effective predator population sizes17. When all of these variables are combined with predator-specific 
consumption, we may estimate the proportion of each prey population being consumed (Fig. 3c)17. Finally, such 
an approach could be repeated globally in various habitats, to reach a world-wide synthesis of the net effect of 
insectivory (Fig. 3d). To go deeper into ecological questions, it would be advisable to add analysis of functional 
diversity of prey, such as prey diversity indices, to receive a better understanding of how the ecosystem works57–59. 
By achieving this, we will reach a novel insight into the ecology of insectivores, how predators are linked through 
shared prey, and to which extent the declining populations of both might alter these interactions. Without high-
quality quantitative information, it is difficult, maybe even impossible to estimate the effect of global changes 
on ecosystem-level dynamics.

Conclusions
To conclude, we have proven that phylogenetically distinct insectivores may share a major proportion of their 
diet. Given the ecological and economical importance of insectivores globally, this topic deserves the attention 
of scientists throughout the world. To aid in this quest, we have planned a roadmap for researchers of various 
subjects. In our ideal scenario, the study organisms are not even captured or encountered, but instead, a set of 
traces (faeces, hair, etc.) are examined and used for detailed analysis. It is now time to put these modern methods 
to test through a simultaneous dissection of interactions among arthropod prey and multiple predator guilds 
across the world (Fig. 1). By following the roadmap outlined above (Fig. 3), we will reach a novel insight into the 
ecology of insectivores, how predators are intertwined through shared prey, and to which extent the declining 
populations of both the predators and the prey might alter these interactions. Without high-quality quantitative 
information, it is difficult, and maybe impossible, to estimate the consequences of the current insect decline on 
the ecosystem worldwide.

Figure 2.   Prey use at the family level. Shown are the frequencies of the five most common families (DIPTERA: 
Chironomidae, Sciaridae, Culicidae; HYMENOPTERA: Ichneumonidae; and LEPIDOPTERA: Noctuidae) and 
of other families combined in the diet of each predator group. Chironomids are the biggest prey group for all of 
the insectivorous predators.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16595  | https://doi.org/10.1038/s41598-020-73609-9

www.nature.com/scientificreports/

 Data availability
The data for this manuscript has already been published for bats23, 24 and dragonflies25, 26. The bird prey species list 
is provided in the online supplementary material and the sequence data will be published later in another article.
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