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Abstract

Background: Antimicrobial resistance (AMR) is a major threat to public health. Microorganisms equipped with AMR
genes are suggested to have partially emerged from natural habitats; however, this hypothesis remains inconclusive
so far. To understand the consequences of the introduction of exogenic antimicrobials into natural environments,
we exposed lichen thalli of Peltigera polydactylon, which represent defined, highly diverse miniature ecosystems, to
clinical (colistin, tetracycline), and non-clinical (glyphosate, alkylpyrazine) antimicrobials. We studied microbiome
responses by analysing DNA- and RNA-based amplicon libraries and metagenomic datasets.

Results: The analyzed samples consisted of the thallus-forming fungus that is associated with cyanobacteria as well
as other diverse and abundant bacterial communities (up to 10° 165 rRNA gene copies ng”' DNA) dominated by
Alphaproteobacteria and Bacteroidetes. Moreover, the natural resistome of this meta-community encompassed 728
AMR genes spanning 30 antimicrobial classes. Following 10 days of exposure to the selected antimicrobials at four
different concentrations (full therapeutic dosage and a gradient of sub-therapeutic dosages), we observed
statistically significant, antimicrobial-specific shifts in the structure and function but not in bacterial abundances
within the microbiota. We observed a relatively lower response after the exposure to the non-clinical compared to
the clinical antimicrobial compounds. Furthermore, we observed specific bacterial responders, e.g., Pseudomonas
and Burkholderia to clinical antimicrobials. Interestingly, the main positive responders naturally occur in low
proportions in the lichen holobiont. Moreover, metagenomic recovery of the responders’ genomes suggested that
they are all naturally equipped with specific genetic repertoires that allow them to thrive and bloom when exposed
to antimicrobials. Of the responders, Sphingomonas, Pseudomonas, and Methylobacterium showed the highest
potential.

Conclusions: Antimicrobial exposure resulted in a microbial dysbiosis due to a bloom of naturally low abundant
taxa (positive responders) with specific AMR features. Overall, this study provides mechanistic insights into
community-level responses of a native microbiota to antimicrobials and suggests novel strategies for AMR
prediction and management.
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Introduction

Antimicrobial resistance (AMR) is an increasingly ser-
ious threat to global public health [1]. New resistance
mechanisms are emerging and spreading globally, which
reduces our means to treat common infectious diseases
and therefore increasingly results in prolonged illness,
disability, and death [1]. Current research suggests that
the unexplored diversity of resistance mechanisms in en-
vironmental bacteria is a risk factor for the human
population, and not only clinical pathogens that are
equipped with AMR [2]. Natural environments are de-
scribed as the origins and reservoirs of antimicrobial re-
sistance genes (ARGs) [3]. Recent studies primarily
focused on microbial communities and their ARGs in a
wide range of human-influenced environments such as
agricultural farmland, crop plants, food production sys-
tems, and wastewater treatment plants [4—7]. However,
to fully understand the evolution, emergence and spread
of antimicrobial resistance, it is crucial to also study nat-
ural systems that are not disturbed by anthropogenic
factors.

Microbial diversity within natural microhabitats is an
important bioindicator of changes in ecosystem function
due to disturbances, such as exposure to pollutants, agri-
cultural practices, climate change [8], and exposure to
antimicrobials (reviewed in [9]). Generally, the effects of
antimicrobials on single microorganisms or small con-
sortia are well-known; however, understanding the con-
sequences of antimicrobial exposure in complex, host-
associated microbiomes is a critical area where more re-
search is required. It is important because the changes
induced by antimicrobial exposure can have an immedi-
ate effect on host health [9]. Exposure to antimicrobial
substances can severely impact microbial communities
and often leads to selection and/or enrichment of ARGs
[10, 11]. A recent study by Mahnert et al. [12] demon-
strated that loss of microbial diversity, due to cleaning in
confined environments such as intensive care units and
cleanroom facilities, correlates with an increase of anti-
microbial resistance features. Despite this growing body
of research that links antimicrobial exposure to changes
in microbial communities, the community response to
antimicrobial exposure in native environments is not yet
understood [13].

Appropriate models for native microbial communities
as well as for antimicrobial substances are required to
obtain mechanistic insights into the effects of antimicro-
bial exposure on natural microbiota. Synthetic microbial
communities are often used to simulate natural systems;
however, they are less complex and less diverse and have
lower functional connectivity than natural microbiota.
Lichens form spatially limited microbial ecosystems con-
sisting of a fungus (mycobiont), eukaryotic algae and/or
cyanobacteria (photobiont), and thousands of different
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bacterial species [14—16]. Lichen-associated bacteria
carry unique functional properties adapted to the holo-
biont, such as the production of antimicrobial sub-
stances and resistance towards toxic compounds [14, 17,
18]. Although many lichens can persist under environ-
mental extremes when they are dehydrated, they are
generally vulnerable to slight changes in their microcli-
mate [19], which substantially affects the fine-tuned
symbiotic interplay [20]. We have selected lichens as
promising systems for the exploration of complex,
community-level responses of the microbiome to anti-
microbial exposure due to their widespread use as
models for classical symbioses as well as for bio-
indication/monitoring approaches [21]. Lichen thalli
were exposed for a defined time period to representative
clinical antimicrobials with narrow (colistin) and broad-
spectrum activity (tetracycline) [22, 23]. A bioactive
alkylpyrazine was included to represent a novel, non-
clinical antimicrobial [24] and glyphosate was included
due to its wide but controversial use as herbicide with
potential to affect the photobiont as well as non-target
microorganisms [25, 26]. Despite its toxicity, colistin is
regarded as a last-line antimicrobial for the treatment of
Gram-negative multi-resistant bacteria in many regions
[27]. Our hypothesis was that all antimicrobials will re-
duce bacterial richness, suppress naturally dominant
taxa, and induce (visible) dysbiosis in the lichen symbi-
osis. Furthermore, due to different target spectra and
modes of action of the four selected antimicrobial com-
pounds, we expected varying responses of the bacterial
communities and enrichment of taxa with specific resist-
ance features.

For this purpose, we studied bacterial community re-
sponses in the ‘many-fruited pelt lichen’ Peltigera poly-
dactylon (Neck.) Hoffm. during exposure to a full
therapeutic dosage and a gradient of sub-therapeutic
dosages of four antimicrobials (colistin, tetracycline, gly-
phosate, alkylpyrazine) by DNA- and RNA-based ampli-
con sequencing along with a metagenomic dataset
analyses. Specifically, we addressed the following ques-
tions: (i) Is there a specific microbial shift induced by
antimicrobial exposure? (ii) Which taxa respond to anti-
microbial exposure? And (iii) which genetic reservoir al-
lows positive responders to thrive under antimicrobial
exposure? Overall, this study provides key insights on
how antimicrobial exposure shapes microbial communi-
ties in their natural environments and provides insights
into the potential consequences of modern antimicrobial
overuse.

Materials and methods

Collection of lichen material and antimicrobial treatments
Peltigera polydactylon (Neck.) Hoffm. samples were col-
lected in the proximate vicinity of a peri-urban area
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(Graz, Austria; 47° 06" 45.6” N, 15° 27’ 55.8” E). The
healthy lichen population is part of a natural forest land-
scape with no industrial zones in the close proximity. It
is located on an elevation and thus not affected by po-
tential run-off from surrounding farmland. The sampling
location represents a relatively pristine environment that
will be affected by progressing urbanization. All samples
were visually examined to detect and remove macro-
scopic contaminants, such as adhering moss and plant
detritus, with sterile tweezers. Following the initial pre-
processing steps, lichen samples (0.5 g dry weight) were
placed into sterile Petri dishes.

Four different antimicrobials including colistin sulphate
(Sigma-Aldrich, USA), tetracycline (Merck, Germany), gly-
phosate (commercial herbicide Roundup® Alphée containing
a glyphosate concentration of 7.20 g/1; Scotts Celaflor, Mainz,
Germany), and an antimicrobial alkylpyrazine (5-isobutyl-2,
3-dimethylpyrazine 97%, Sigma-Aldrich, USA) were used. As
antimicrobial dosages could substantially impact the micro-
bial community (reviewed in [8]), we selected dosages of the
antimicrobials based on previous published studies that rep-
resented a full dosage (FD) and sub-therapeutic dosages (SD;
5-, 10-, and 20-fold dilution of FD) of each antimicrobial (in
total 16 treatments; Table 1). Aqueous working solutions of
each antimicrobial were prepared in sterile water as the solv-
ent. Lichen samples were treated every 24 h with the antimi-
crobials over a period of 10days by spraying the
antimicrobial solutions (approximately 750 uL per treatment)
onto the surface of the lichens. Negative controls were im-
plemented where lichens were sprayed with sterile water.
The lichen samples were kept at room temperature. During
the experiment, the average relative humidity range was be-
tween 58 and 65% (average = 61.8%), whereas the average
temperature was between 21 and 25 °C (average = 23.1°C).
Each treatment was performed in three biological replicates.
After a 10-day incubation period, the samples were immedi-
ately transferred into a 15-ml reaction tube with RNAlater
stabilization solution (Ambion, Life Technologies, Germany)
and stored at — 80 °C until total nucleic acid extraction.

Total nucleic acid extraction and cDNA synthesis

Total deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA), from approximately 100 mg of lichen sample,
was extracted using the FastDNA™ SPIN Kit for Soil
(MP Biomedicals, Germany) and TRIzol° Plus RNA
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Purification Kit (Ambion, Life Technologies), respect-
ively, following the manufacturer’s instructions. To fa-
cilitate cell lysis, the samples were homogenized at room
temperature using the FastPrep™ Lysing Matrix E and a
FastPrep®-24 Instrument (MP Biomedicals, Germany) for
3 x 30 s at 6.0 m/s with 1 min in-between cooling on
ice. The RNA and DNA quality and quantity were exam-
ined by using the NanoDrop™ 2000/2000c Spectropho-
tometer and Qubit dsDNA BR and Qubit RNA HS
Assay Kit (Thermofischer Scientific), respectively. To re-
move genomic DNA, total RNA (100 ng) was treated
with DNase I (Epicentre; Lucigen, USA) and subse-
quently used to synthetize complementary DNA (cDNA)
using 5X All-In-One RT MasterMix (Applied Bio-
logical Materials, Richmond, BC, Canada) according to
the manufacturer’s instructions. Prior further analysis,
c¢DNA was diluted 10 times using nuclease-free water
(Carl Roth, Germany).

Quantification of bacteria in lichen samples

Quantitative real-time PCR (qPCR) based on SYBR
Green fluorescence was performed to quantify the total
and active bacterial density after antimicrobial treatment
using the primer pair 515f-927r [33, 34]. In total, 51
DNA and 51 cDNA samples were analysed (three bio-
logical replicates of each treatment and concentration).
The qPCR reaction mix contained 1uL DNA/cDNA
template, 5pul. KAPA SYBR® FAST qPCR Master Mix
(2X) (KAPA Biosystem, USA), 1 uL 10 uM of each pri-
mer, and 3 pL ultrapure water. Fluorescence quantifica-
tion was performed using the Rotor-Gene 6000 real-
time rotary analyser (Corbett Research, Sydney,
Australia) with initial denaturing at 95°C for 10 min,
followed by 40 cycles of denaturing at 95 °C for 30s, an-
nealing at 60 °C or 62 °C or 64 °C for 30s, and extension
at 72°C for 30's and a final melting curve. The Unibac-II
fragment [33] was subjected to serial dilution (1:10) and
run in two technical replicates to create qPCR standard.
Negative and no-template controls were included in
every run.

Amplicon sequencing-based analyses of active and total
bacterial communities

Extracted DNA and ¢cDNA were subjected for amplicon
polymerase chain reaction (PCR) to target the bacterial

Table 1 Antimicrobial substances and their dosages used in this study

Antimicrobial Full dosage Sub-therapeutic dosages (n = 3) Reference
Colistin* 300 mg/kg 60, 30, and 15 mg/kg [28, 29]
Tetracycline* 1000 mg/kg 200, 100, and 50 mg/kg [30]
Glyphosate 729/l 144, 0.7, and 036 g/L [31]
Alkylpyrazine 0.66% 0.13,0.07, and 0.03% [32]

*The required amount of these antimicrobials was calculated based on fresh weight of lichen thalli
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community. The primer set 515f/926r was used to amp-
lify the V4-V5 region of bacterial 16S rRNA gene [35].
The primers were constructed to contain an overhang at
the 5’ end that was used to attach barcodes and Illumina
flow cell adapter sequences in the subsequent PCR as
previously described in the protocols of the Earth Micro-
biome Project [36]. Two technical replicates were per-
formed for each sample. The quality of the PCR
products was checked visually by loading to 1% agarose
gel electrophoresis and using ultra-violet light with
Biorad Universal Hood II Gel Doc System (Biorad,
USA). Barcoded PCR products were pooled in equimolar
concentrations after purification using Wizard® SV Gel
and PCR Clean-Up kit (Promega). The pooled library
was sent to the Genewiz (Leipzig, Germany) and se-
quenced using [llumina MiSeq (v2 reaction kit) (2 x 300
bp paired-end).

Bioinformatic analyses

Due to low quality of the reverse reads, we only used
forward reads for the amplicon sequencing analysis. To
confirm robustness of the conducted data analysis, we
compared forward and paired-end read datasets and ob-
served a congruent result with both analysis strategies
(Table S1 and Table S2). Due to a higher species rich-
ness that was observed in the dataset with forward reads
(Fig. S1), we decided to exclusively use this dataset for
further analyses. Bioinformatic analysis of the amplicon
sequences was performed using the open-source QIIM
E2 version 2018.4.0 pipeline (https://qiime2.org [37];).
Demultiplex raw reads were imported to QIIME2 using
‘qiime tools import’. Primer sequences were removed
using the cutadapt plugin [38]. The DADA2 algorithm
was used to quality filter and denoise demultiplexed se-
quences [39]. Subsequently, chimeric sequences were re-
moved using the DADA?2 chimera removal. The resulted
amplicon sequences variants (ASVs) were taxonomically
classified by using the VSEARCH classifier [40] against
the reference database Silva v128 [41]. Prior further ana-
lysis, all reads assigned to Cyanobacteria and mitochon-
dria were removed from the dataset.

The herein used metagenomic dataset (MG-RAST ID:
mgm4551030.3) was previously reported [20] in the con-
text of screening for arsenic-related functions. It was ob-
tained from the same lichen population that was used
for the present study. The raw data was re-analysed with
updated bioinformatic tools to investigate ecological
function and ARGs diversity in the lichen holobiont.
Shotgun metagenomic reads were subjected to adapter
trimming and quality filtering using Trimmomatic and
VSEARCH [40, 42]. The filtered reads were used as in-
put files for taxonomic profiling using Kaiju [43] and for
assembly using metaSPAdes with default parameters
[44]. The filtered reads were mapped back to the
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assembled contigs using Bowtie2 [45]. The assembled
contigs were annotated using the blastx algorithm in
DIAMOND [46] against eggNOG version 4.5 database
[47] and the manually curated antimicrobial resistance
gene database (deepARG) [48] to perform ecological
function and antimicrobial resistance genes profiling. To
minimize the risk of false positives, reads were defined
as ARG-like reads at the cut-off E value of 10™'° and
similarity of 35% as previously described by [49, 50]. Fea-
tureCounts [51] were used to align metagenomic reads
to the annotated contigs and to obtain total read num-
bers, respectively. Amplicon sequences were deposited at
the European Nucleotide Archive (ENA) under the pro-
ject number PRJEB37912.

Statistical analyses

The R version 1.2 (R Core Team, 2017) was used to per-
form general statistical analysis and visualize results. Sig-
nificant differences (P < 0.05) of bacterial gene copy
numbers were analysed using the non-parametric
Kruskall-Wallis test. The ASV tables and taxonomic
classifications that were generated with QIIME2 were
imported into R via phyloseq [52]. The number of se-
quences from each amplicon sequencing library was nor-
malized to the lowest number of read counts (1009
reads per sample) by randomly selecting subsets of se-
quences. A taxonomy summary of the top 100 most
abundant ASV at class level was visualized by using the
integrated bar plots. Differences in microbial alpha di-
versity based on the number of identified ASVs and the
Shannon index were analysed using the non-parametric
Kruskall-Wallis test followed by the paired difference
test, Wilcoxon signed-rank test. The beta diversity as-
sessment based on normalized Bray-Curtis dissimilarity
matrix was subjected to the Adonis test (999 permuta-
tions) to determine the effect of antimicrobial exposure
and different dosages on microbial community struc-
tures. The distance matrices were visualized using
non-metric multidimensional scaling (NMDS) plots.
The analyses mentioned above were performed
using the R package vegan [53]. We also correlated
total and active bacterial community matrix dis-
tance through partial Mantel tests (corrected for
spatial distance) with 999 permutations. Bacterial
genera associated with each antibiotic treatment
were identified by LefSe (liner discriminant analysis
effect size) as implemented in MicrobiomeAnalyst
[54-56]. The threshold for the linear discriminant
analysis (LDA) was set to 2 with a P value cut-off
of 0.05. Finally, the correlation analysis imple-
mented in the ggpubr package [57] was used to cal-
culate Spearman coefficients for correlations
between bacterial genera and different antimicrobial
compounds.
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Complementary quantification of the mcr1 gene by qPCR
To quantify AMR activation of the positive responders
at mRNA level, we performed a targeted qPCR analysis
of the mcrl gene. The mcrl gene was selected, because
it is the only known gene that confers colistin resistance.
We therefore expected that it is present in lichen-
associated bacteria that thrive under colistin exposure.
The qPCR experiments were conducted using the pri-
mer pair mcrlFP-mcr1RP as previously described [58].
A mcrl standard was obtained from ten-fold serial dilu-
tions of the genomic DNA of a colistin-resistant Escheri-
chia coli isolate. The isolate is part of the culture
collection of the Department of Internal Medicine, Med-
ical University, of Graz. Extracted cDNA from colistin-
treated and control samples was subjected to qPCR ana-
lyses using the Rotor-Gene 6000 real-time rotary ana-
lyser (Corbett Research) with previously described
parameters [58].

Results

The Peltigera microbiome and antimicrobial resistance
genes

A total of 1.67 x 10° (1.63 x 10* per sample mean) high-
quality reads were obtained in the amplicon sequencing
approach. From the metagenomic dataset, a total of 13.9
x 10° reads were annotated using the eggNOG database,
while a total of 3.04 x 10° reads (0.82% of total reads)
was assigned to ARGs using the deepARG database. Ac-
cording to the Kaiju classifier, we detected metagenomic
contigs that were classified as Cyanobacteria. Amplicon
libraries were also dominated by Nostocaceae (Cyano-
bacteria phylum) sequences. These contigs and the re-
spective raw sequences were not evaluated as part of the
bacterial community because Nostoc represent the well-
studied, homogenous phototobiont in Peltigera, and they
commonly carry only a few distinct ARGs, for example
mtrA (multidrug resistance gene). After filtering non-
target taxa, a total of 8.6 x 10° (8.4 x 10® per sample
mean) amplicon sequencing reads were retained and
assigned to 3124 bacterial ASVs. Comparison between
community assessments on metagenome, DNA ampli-
con, and RNA amplicon level revealed that the general
bacterial community structure showed a certain congru-
ent at class and order level across the dataset regardless
of different approaches (Fig. 1la—c). Alphaproteobacteria
were the most dominant class in the Peltigera-associated
microbiome in the non-treated samples with a relative
abundance (RA) of 29-43%. The other predominant
classes were Bacteroidetes (17-28%), and Gammaproteo-
bacteria/Betaproteobacteria (9-17%). Taxonomic ana-
lysis revealed four highly abundant orders, ie,
Rhizobiales (17.6%, average RA from metagenomic and
amplicon sequencing dataset), Sphingobacteriales
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(12.3%), Sphingomodales (10.3%), and Betaproteobacter-
iales (8.7%).

We conducted a general functional analysis, which fo-
cused on functions that could directly affect the symbi-
osis. In the overall dataset, the majority of metagenomic
reads (65%) was assigned to bacterial proteins. Therein,
we detected numerous reads (1.4%) assigned to Ton and
Tol transport systems which are involved in iron uptake.
Many of these reads were derived from Sphingomonas,
Methylobacterium, and Mucilaginibacter. Genes that are
involved in vitamin production such as cobalamin bio-
synthesis protein and folate metabolism (0.3%) were also
detected within contigs derived from these taxa. In
addition, bacterial porin proteins such as carbohydrate-
selective porin and aquaporin that may be involved in
carbohydrate metabolism and drought stress were also
detected (0.03%). Using the eggNOG database, we found
that a high number of bacterial reads (2.6%) were
assigned to defence mechanism function. The majority
of those proteins (25.5%) were annotated as part of an
ABC-transport system.

More specific profiling of antimicrobial resistance
genes in the metagenomic dataset against the deepARG
database resulted in the detection of 728 ARGs spanning
30 antimicrobial classes (Fig. 1d). Most of the identified
ARGs originated from Proteobacteria (28% of Alphapro-
teobacteria and 20% of Beta/Gammaproteobacteria, Fig.
S2). A total of 80.5% detected ARGs were classified to
macrolide-lincosamide-stretogramin  (MLS) multidrug
classes, bacitracin, beta lactam, and polymyxin. This
finding indicated a high diversity, but a low abundance,
of ARGs embedded in the lichen metagenome (Fig. 1d).

Responses to exposure to antimicrobials at phenotype
and genotype level (richness and diversity)
Antimicrobial treatments resulted in phenotypic changes
to the exposed Peltigera thalli. A change of colour from
drab grey-green to dark brown in lichen samples treated
with the full dosage of the alkylpyrazine was observed
after 3 days of continuous exposure in comparison to
the control (Fig. S3). A similar phenotypic change was
also observed in samples treated with the full dosage of
glyphosate after 5days, which became more obvious
after 8 days of continuous exposure. We did not observe
a change of colour in lichen thalli that were treated with
sub-therapeutic dosages of alkylpyrazine and glyphosate
as well as colistin and tetracycline treated samples in
comparison to the control during the whole experiment.
These changes indicate that the naturally occurring
cyanobacteria were negatively affected by the alkylpyra-
zine and glyphosate treatments due to algicidal proper-
ties of these antimicrobials.

Different exposures to antimicrobials and their re-
spective dosages affected bacterial richness (P < 0.001, P
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Fig. 1 The results of bacterial community (a—c) and antimicrobial resistance gene profiling (d) of the Peltigera-associated microbiome are
visualized in Krona charts and a circle packing plot. The lichen thallus-associated community was assessed with a DNA-based amplicon
sequencing, b RNA-based amplicon sequencing, and ¢ shotgun metagenomic sequencing. An AMR profile was obtained by specific assignments
within the deepARG database. Different colours indicate specific ARG classes

= 0.010, respectively, Table S3) according to the Shan-
non diversity index (H), whereas the assessment type
(DNA- or RNA-based amplicons) did not have any effect
on the alpha diversity (P = 0.632, Table S3). When ana-
lysed separately, each of the employed dosages of alkyl-
pyrazine and glyphosate showed no significant changes
in bacterial richness when compared to the untreated
control group (P > 0.05, Table S3). In contrast, highly
significant changes were observed for the colistin and
tetracycline treatments (P < 0.001, Table S3). Increased
dosage of these antimicrobial substances resulted in sub-
stantially reduced bacterial richness. The highest impact
was observed in the samples exposed to the full dosages

of colistin (H' = 1.7 and H = 1.7—total and active bac-
teria, Table S4) and tetracycline (H = 1.4 and H' = 2.5)
in comparison to non-treated samples (H’ = 4.3 and H' =
4.3).

To investigate the impact of the antimicrobial expos-
ure on the bacterial community structure, beta diversity
analysis was performed using Bray-Curtis matrix dis-
tance in combination with Adonis and visualized using a
non-metric multidimensional scaling (NMDS) plot. The
antimicrobial type was found to be the main driver of
the bacterial community structure (R* = 0.265, P =
0.001, Table 2, Fig. 2a), whereas the other factors, such
as antimicrobial dosage or type of community (total or
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active bacterial fraction) only explained a small amount of
the variation (P = 0.001; R* = 0.076 and R* = 0.043, respect-
ively). A complementary Mantel test showed a highly signifi-
cant correlation of both, the total bacterial community and
the active community (P = 0.001, R = 0.719). This indicated
a high congruent between these approaches. When the data
was separated according to the antimicrobial substance, we
observed that antimicrobial dosage in each dataset had a
substantial impact on bacterial community structure (P =
0.001, R* = 0.255-0.571). In ordination space, a clear cluster-
ing was observed between treated and non-treated samples
where samples that were treated with higher dosage are fur-
ther apart from non-treated samples (Fig. 2b—e). A note-
worthy result was that a higher impact of antimicrobial
dosage was observed in the colistin dataset (R? = 0.571) com-
pared to other datasets.

Antimicrobial exposure induces changes in bacterial
community composition without altering bacterial
abundances

To investigate the total and active bacterial abundance
of the lichen-associated bacteria after antimicrobial

Table 2 Effect of antimicrobial treatment, dosages, and
sample type (DNA or RNA) on bacterial community
structure ((3-diversity). A complementary statistical analysis was
conducted in order to identify factors with a significant effect
on the bacterial community

Factor Microbial community similarities
R? value P value

All datasets

Antimicrobials 0.265 0.001*

Dosage 0.076 0.001*

Type 0.043 0.001%
Colistin dataset

Dosage (D) 0.528 0.001*

Type (T) 0.069 0.001%

DxT 0.131 0.001*
Tetracycline dataset

Dosage (D) 0471 0.001*

Type (T) 0.065 0.007*

DxT 0.097 0.087
Alkylpyrazine dataset

Dosage (D) 0.340 0.001*

Type (T) 0.134 0.001*

DxT 0.128 0.011*
Glyphosate dataset

Dosage (D) 0.255 0.001*

Type (T) 0.070 0.001*

DxT 0.099 0.769

*Significant differences (P < 0.05) were assessed with the Adonis test
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exposure, a quantitative polymerase chain reaction
(qPCR) approach with specific bacterial primers, target-
ing the 16S ribosomal RNA gene was performed. Total
bacterial rRNA gene abundance ranged between 1.02 x
107 and 1.90 x 10® 16S rRNA gene copies per ng ex-
tracted DNA whereas active bacterial rRNA gene abun-
dance ranged between 4.40 x 10 and 6.35 x 10* 16S
rRNA gene copies per ng extracted RNA (Table S5).
Overall, statistical significance tested using the Kruskal-
Wallis test showed no effect of antimicrobial treatment
on bacterial abundance (P > 0.05).

In order to visualize taxonomic composition of the li-
chen holobiont after antimicrobial exposures, bar plots
showing the 100 most abundant bacterial ASVs were
constructed (Fig. 3). Distinct taxonomical changes were
observed after antimicrobial exposure depending on the
type of antimicrobial and their dosages. Taxonomical
shifts after exposure to colistin were more similar to
tetracycline exposure whereas glyphosate exposure
showed a more similar taxonomical shift to alkylpyrazine
exposure.

Most remarkably, the abundances of Pseudomonada-
ceae family (Gammaproteobacteria), increased in re-
sponse to colistin exposure. The relative abundance of
Pseudomonadaceae gradually increased in response to
colistin exposure which reached up to 79.6% and 80.3%
in the total and active bacterial fraction, respectively,
when exposed to the full dosage of colistin. In contrast,
this taxon represented only 5.9 and 3.3% (total and ac-
tive bacterial fraction, respectively) in non-treated sam-
ples. A similar pattern was observed after exposure to
tetracycline where the relative abundance increased up
to 49.4% and 31.1% in the treatment with the full dos-
age. In contrast, the relative abundances of Sphingobac-
teriaceae as well as Sphingomonadaceae decreased to
below 0.2% and 0.6% after full dosage exposure of these
antimicrobial substances. Taxonomical shifts in the bac-
terial families were also observed after alkylpyrazine ex-
posure with an increase in Beijerinckiaceae, ranging
from 26.5% and 20.8% (total and active bacterial fraction,
respectively), with the lowest concentration of alkylpyra-
zine, to 30.4% and 31.1% in the full dosage, in compari-
son to non-treated samples (17.3% and 16.4%). Overall,
exposure to antimicrobial substances at different dosages
induced shifts in the bacterial community structure (Fig.
3a, b). Moreover, an indication of microbial imbalance
due to selectively enriched low abundant taxa was ob-
served in samples treated with colistin and tetracycline.

Putative roles of the identified bacterial responders

Calculation of linear discriminant analysis effect size
(LEfSe) was performed to identify taxa that were signifi-
cantly affected by antimicrobial treatments. The analysis
indicated that 15 and 12 bacterial genera were affected
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in the total and active bacterial community of
antimicrobial-treated and non-treated samples, respect-
ively (Fig. S4). Pseudomonas and Curtobacterium were
consistently enriched under colistin exposure and Bur-
kholderia was consistently enriched under tetracycline
exposure (Fig. S4). The analysis also indicated that
Methylobacterium, Acidiphilium, and an unidentified

member of Beijerinckiaceae were consistently enriched
under alkylpyrazine exposure. In complementary ana-
lyses, we statistically examined correlations between the
relative abundance of bacterial genera and antimicrobial
concentrations. To minimize spurious correlation, we se-
lected only bacterial genera with a relative abundance
above 2% in the whole dataset. Acidiphilium,
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Burkholderia, and Sphingomonas were found to consist-
ently negatively correlate to increase dosage of colistin
in both, total and active bacterial community. The latter
taxon was also negatively correlated with increasing
tetracycline dosage. Several genera, i.e., Acidiphilium,
Flavobacterium, Mucilaginibacter, Methylobacterium,
and Rhizobium were identified to also negatively correl-
ate to increased dosages of tetracycline in the total bac-
terial community dataset. We further identified bacterial
genera that were positively correlated to increased anti-
microbial dosage in both, the total and the active bacter-
ial community (P < 0.05, Fig. 4a, b). The relative
abundance of Pseudomonas was found to correlate to in-
creased dosage of colistin and tetracycline in the total
and active bacterial community. Burkholderia was found
to correlate to an increased dosage of tetracycline while
Sphingomonas was correlated to an increased dosage of
glyphosate (Fig. 44, b).

To address the question why distinct responders could
thrive under pressure caused by specific antimicrobials,
we investigated contigs that were assigned to each of the

responders from the metagenome dataset and compared
the presence/absence of specific antimicrobial resistance
genes. From the detected ARGs in the Peltigera meta-
genome, a network of co-occurring ARGs was con-
structed to visualize shared and unique ARGs of the
selected responders (Fig. 4c). A high proportion of mul-
tidrug resistance and quinolone were shared between
the responders. Sphingomonas (n = 102), Pseudomonas
(n = 83), and Methylobacterium (n = 69) had a higher
number of multidrug resistance genes in comparison to
other responders such as Burkholderia (n = 47) and Rhi-
zobium (n = 51). Moreover, a higher number of multi-
drug resistance genes in  Sphingomonas and
Methylobacterium contigs may explain how responders
could thrive during exposure to non-clinical antimicro-
bial substances, glyphosate and alkylpyrazine, respect-
ively. Despite the high occurrence of shared ARG genes,
mcrl, a colistin resistance gene, was detected in Pseudo-
monas-derived contigs indicating that this gene may be
responsible for its thriving under colistin exposure.
When copy numbers of the mcrl transcript were



Wicaksono et al. Microbiome (2021) 9:29 Page 10 of 14
P
a b
1.0 4 1.0
0.8 @ @ . 0.8 @ @ .
3 3
% 0.6 % 06 o
z 04 (@) z o4 @
o o
2 02 2 02
° °
c 02 02
8 0.4 $ 04
3 e _ ©O o o g P X
g 08 Q . .O g -0s @ O
038 @ 0.8
10" @ 1.0
Cc
%o . o
o0 \d 'Y &
. ..o ° ° .o 9%
o ° 'Y L0 o S,
v*‘° e e gy % Responder
& © ° g ®ce0® I -
) [ ) [ o J Mucilaginibacter
N e%e . W O
D) © % ° il o0 )
° ° ®oe0® . ° O Sphingomonas
e A\ 7 27l Methylobacteri
.. N .. o ° O lethylobacterium
° s ° Pseudomonas
000
e ) .. .. ® T
° .. .‘ . . Acidiphilium
® : core % ) . Flavobacterium
oo ° o
(X S ‘ Rhizobium
. . oo®® Burkholderia
(L1 ... .. .
(J (]
& . O ..' % ARG class
ove ]
o O @ : = : . aminoglycoside
Otnique® ° unique o
oo .. .. : . beta lactame
o ..o. b o . chloramphenicol
unique .. .. .n. ... . glycopeptide
S ek ° unique % o®
e unique q (] 0
o) ... q ... ®00000® macrolide-lino-strep
< £ : f'e.... . multidrug
Py \ . polymyxin
.. % ® ° ...Q. . tetracycline
° °®
A~ ) e ° inol
5.0 ! o, ... ™ .. .. . quinolone
pe . o500, ®e¢0® . other
b oe® )
S4, e o
Q[b
Qéy o P, &
®000®
Y, oo
Fig. 4 Correlation analysis between relative abundances of bacterial genera and antimicrobial dosages (a, b) and network visualization of shared
and unique antimicrobial resistance genes (ARGs) from selected bacterial responders (c). Responders (indicated with different colours) are shown
in the a total bacterial community and b active bacterial community. Only correlations with P < 0.05 are displayed. The nodes in the network are
coloured according to ARG classes. COL, colistin; TET, tetracycline; GLY, glyphosate; PYR, 5-isobutyl-2,3-dimethylpyrazine

analysed via qPCR in colistin-treated and non-treated
samples, significantly (P = 0.007) higher transcript num-
bers were found in colistin-treated samples irrespective
of the dosage in comparison to non-treated samples
(Table S6).

All positive and negative responders were shown to
carry tetracycline resistance genes. A higher number of
tetracycline resistance genes was found in negative re-
sponders Mucilaginibacter (n = 19) and Sphingomonas
(n = 22) derived contigs in comparison to the positive
responders, i.e., Burkholderia (n = 3) and Pseudomonas

(n = 4). We also detected tetAB(46) and tetAB(60) that
was only shared between Mucilaginibacter and Sphingo-
monas. These genes encode ABC transporters that con-
fer resistance to tetracycline.

Discussion

Our data highlights that the natural microbiome of Pelti-
gera comprises highly diverse and low abundant intrinsic
ARGs, which provide a retrievable basis to cope with
antimicrobial pressure. Similar to other relatively pristine
environments, ARGs were found to be ubiquitous and to
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harbour a high number of different efflux pump systems
[13, 59, 60]. In nature, ARGs fulfil various roles and are
commonly involved in processes such as detoxification
and molecular signalling. However, the same mecha-
nisms can also serve as an essential feature of nosoco-
mial pathogens to overcome high (toxic) antimicrobial
concentrations that are found in clinical settings [59,
61]. The high diversity of ARGs that was detected in the
present study, reflects the natural complexity of micro-
bial communities that are commonly associated with li-
chens, and have previously been shown to provide
metabolic versatility that facilitates plasticity of the li-
chen holobiont [13, 62].

Our study provides the first detailed insights into
community-level response to antimicrobial exposure in a
pristine system. In agreement to previous reports and, as
expected, a higher impact of antimicrobial exposure was
observed on the bacterial community structure com-
pared to the bacterial abundance [26, 30]. We observed
a specific shift in the taxonomic composition and com-
munity structure of native bacteria as a response to anti-
microbial  exposure. Despite minor variations,
comparable and congruent alpha and beta diversity re-
sults between DNA- and RNA-based amplicon sequen-
cing indicated that both of the approaches reflected how
antimicrobial exposure shaped the bacterial community.
Both approaches led to the identification of mostly over-
lapping responder taxa. Moreover, the similarity between
the DNA and RNA approach indicates that the majority
of bacteria in lichen was active. We observed a relatively
lower effect after exposure to non-clinical antimicrobial
compounds, i.e., glyphosate and alkylpyrazine despite
their broad activity spectrum compared to the clinical
antimicrobial compounds, ie., colistin and tetracycline.
This indicated that the bacterial community is more re-
silient towards non-clinical antimicrobials. We
hypothesize that the diversity of unspecific multidrug ef-
flux pumps that are shared among Peltigera-associated bac-
teria may play a major role in the observed resilience.
Distinct taxa such as Sphingomonas and Methylobacterium
are equipped with a high number of multidrug resistance
features, which are likely important for their resilience to-
wards non-clinical antimicrobial compounds. Multidrug ef-
flux pumps, especially ABC transporters, are known to
contribute to herbicide resistance [63, 64]. Despite this,
there are no studies reporting resistance genes against pyra-
zines, producers of these compounds can be frequently
found in nature and more specifically in the microbiota of
other lichens [65, 66]. Thus, Peltigera-associated bacteria
may likely encounter these antimicrobial compounds in na-
ture whereby multidrug efflux pumps likely provide the
best means for detoxification [61].

Certain taxa in the lichen microbiome that naturally
occur in low abundances but are equipped with specific

Page 11 of 14

resistance features, increased in response to colistin and
tetracycline. Antimicrobial exposure might have created
a temporary ‘biological vacuum’ as a result of the reduc-
tion of bacterial diversity and therefore created a new
niche for more resilient bacteria (responders) for
recolonization and bloom [67, 68]. Pseudomonas consist-
ently increased in response to colistin and tetracycline.
The mcrl gene, which encodes a phosphoethanolamine
transferase, was found among Pseudomonas-assigned
contigs in the metagenomic dataset and provides an ex-
planation for the resilience against colistin. The mcrl
transcripts were also higher in colistin-treated samples
in comparison to non-treated samples when assessed
with a complementary qPCR approach. This gene con-
stitutes the only known mechanism to confer colistin re-
sistance by altering antimicrobial-specific binding sites
(reviewed in [69-71]). It remains unclear how the posi-
tive responders, ie., Pseudomonas and Burkholderia
could thrive under tetracycline exposure, because nega-
tive responders were shown to also harbour tetracycline
resistance genes. Nevertheless, it is worth to mention
that the presence of genes in a metagenomic library do
not necessarily imply their functional expression [72].
This is important in the context of our study since we
detected a high number of tetracycline resistance genes
in Sphingomonas and Mucilaginibacter despite the ob-
served negative effect of tetracycline exposure on their
relative abundance. Nevertheless, other factors such as
increased bacterial resilience through biofilm formation,
the host response and nutrient availability that were not
assessed in this study, might be involved in increased
abundance of distinct taxa under specific antimicrobial
exposure [73, 74]. Therefore, further studies based on
metatranscriptomic and metaproteomic approaches will
be needed to identify genes, proteins, and pathways that
are associated with bacterial community responses dur-
ing antimicrobial exposure.

We showed that naturally dominant taxa, such as
Sphingomonas and Mucilaginibacter, were negatively
correlated to increased concentrations of clinical antimi-
crobials. Lichens are known to harbour bacteria with
functional guilds that play an essential role as probiotics
and detoxifiers [18]. Dominant taxa, such as Sphingomo-
nas and Mucilaginibacter that encoded for various trans-
port machineries, such as Ton- and Tol-dependent
transport as well as porins, are suggested to play import-
ant roles in iron metabolism and transport as part of a
survival strategy in the lichen holobiont [14, 75]. Follow-
ing antimicrobial exposure, it was observed that the na-
tive microbiota may be restored to the initial
composition; however, the restoration remains often in-
complete (reviewed in [76]). Therefore, collateral dam-
age of dominant and crucial taxa from prolonged
exposure to antimicrobials may disrupt the fine-tuned
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symbiotic interplay in lichens even if they harbour resist-
ant taxa. In the present study, we also observed a bloom
of low abundant taxa that carry features that are known
to confer colistin resistance. This is relevant in the con-
text of potential spread of natural AMRs to clinical set-
tings, which currently rely on this antibiotic. Lichens
that cover up to 8% of the total terrestrial surface [77]
may be increasingly affected by anthropogenic activities
in the future such as overuse of antimicrobial substances
[78]; the use of antimicrobials for agricultural purposes
is predicted to increase at least 99% by 2030 [79]. In-
creased antimicrobial pressure in natural AMR reser-
voirs may increase the risk for resistance transmission to
opportunistic human pathogens [59, 80].

Conclusion

Lichens are ideal model organisms to mechanistically
study how antimicrobial exposure affects native micro-
biota due to their well-defined, highly diverse bacterial
colonizers. All antimicrobial substances showed an im-
pact on the microbiome and we identified distinct posi-
tive as well as negative responders. Microbial dysbiosis
caused by exogenic antimicrobials can result in a bloom
of naturally low abundant taxa (positive responders) with
specific AMR features. Bacteria assigned to the genera
Pseudomonas, Sphingomonas, Burkholderia, and Methy-
lobacterium were identified as positive responders; many
species of these genera are already well-known nosoco-
mial pathogens in clinical environments. The findings of
the present study indicate that in situ exposure of micro-
bial communities can facilitate the identification of
AMR-carriers with resistance features of opportunistic
human pathogens and is thus a valuable tool to explore
their emergence. Moreover, these and future findings
may be translatable into new management strategies for
AMR-affected environments, e.g., alternating use of dif-
ferent antimicrobials in clinical settings to reduce spe-
cific antimicrobial pressure that was shown to result in a
bloom of distinct resistance carriers.
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