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ABSTRACT Microorganisms that degrade cellulose utilize extracellular reactions
that yield free by-products which can promote interactions with noncellulolytic
organisms. We hypothesized that these interactions determine the ecological and
physiological traits governing the fate of cellulosic carbon (C) in soil. We performed
comparative genomics with genome bins from a shotgun metagenomic-stable iso-
tope probing experiment to characterize the attributes of cellulolytic and noncellulo-
lytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would
exhibit competitive traits that limit access, while noncellulolytic taxa would display
greater metabolic dependency, such as signatures of adaptive gene loss. We tested
our hypotheses by evaluating genomic traits indicative of competitive exclusion or
metabolic dependency, such as antibiotic production, growth rate, surface attach-
ment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa
were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota),
which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and com-
petitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellu-
lolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in
dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from
cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more
dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial
labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g.,
Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adapta-
tions for surface colonization (e.g., gliding motility, hyphae, attachment structures)
signifying the importance of surface ecology in decomposing particulate organic
matter. Our results demonstrated that access to cellulosic C was accompanied by ec-
ological trade-offs characterized by differing degrees of metabolic dependency and
competitive exclusion.

IMPORTANCE Our study reveals the ecogenomic traits of microorganisms participat-
ing in the cellulose economy of soil. We identified three major categories of partici-
pants in this economy: (i) independent primary degraders, (ii) interdependent pri-
mary degraders, and (iii) secondary consumers (mutualists, opportunists, and parasites).
Trade-offs between independent primary degraders, whose adaptations favor antago-
nism and competitive exclusion, and interdependent and secondary degraders, whose
adaptations favor complex interspecies interactions, are expected to affect the fate of
microbially processed carbon in soil. Our findings provide useful insights into the eco-
logical relationships that govern one of the planet’s most abundant resources of organic
carbon. Furthermore, we demonstrate a novel gradient-resolved approach for stable iso-
tope probing, which provides a cultivation-independent, genome-centric perspective
into soil microbial processes.
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Cellulose is a major structural component of plant biomass and serves as a resource
for productive and diverse soil microorganisms (1). Since cellulose is insoluble and

highly crystalline, it cannot be transported across cell membranes. Hence, microorgan-
isms rely on extracellular reactions to digest its fibers into soluble by-products for cell
metabolism. Due to the structural complexity of lignocellulose, cellulose degradation is
facilitated by synergistic interactions between diverse enzymes that differ in specific
activity (2, 3). Physiological traits also influence the deconstruction of cellulose fibers,
such as those linked to surface colonization like hyphal growth by members of fungi
and Actinobacteria (4, 5), gliding motility in Bacteroidetes (6), and the formation of cellu-
losomes by many anaerobes (7, 8). These circumstances predispose microorganisms
involved in cellulose degradation to metabolic, spatial, and ecological interactions.
However, due to a reliance on isolation and coculturing, the nature of ecological inter-
actions within cellulose-degrading consortia remain poorly understood, despite evi-
dence of their occurrence in amplicon-based stable-isotope probing (SIP) studies
(9–18). Shotgun metagenomics coupled to DNA-SIP now provides the capacity to com-
pare the ecogenomic traits of diverse microorganisms that participate directly in the
cellulose economy as it occurs in soil.

The extracellular nature of cellulose degradation creates conditions where the fit-
ness of individuals is contingent on both competition and facilitation. Competition for
cellulose and its degradation products impose fitness costs on cellulolytic organisms,
promoting antagonistic interactions (19–21). However, facilitation by commensal and
mutualistic partners enhances degradation rates to the benefit of cellulolytic organ-
isms (22). Many cellulolytic microbes have close relatives lacking in endoglucanases,
suggesting adaptive benefits from the gain or loss of these genes (23). The beneficia-
ries of community metabolism should be expected to shed energetically costly traits,
resulting in adaptive gene loss and evolution of metabolic dependency (24). For exam-
ple, noncellulolytic bacteria can complement the metabolic functions of cellulolytic
bacteria in vitro, through complementary catabolism (25, 26), vitamin biosynthesis (27),
amino acid biosynthesis (28), or biosynthesis of other essential metabolites (29). Such met-
abolic dependency can occur through specific, tightly coupled interactions, such as syntro-
phic partnerships, or via loosely coupled and nonspecific dependencies, such as a reliance
on metabolic by-products or the mortality of community members (30, 31). We expect the
anabolic and catabolic by-products of cellulolytic microbes to structure trophic interactions
(i.e., the cellulose economy) and the fate of cellulosic carbon in soil.

Shotgun metagenomics and the recovery of metagenome-assembled genomes
(MAGs) provide a cultivation-independent means of performing comparative genomics
to study the phylogenetic and functional characteristics of microbial communities. This
approach has been used to identify ecogenomic traits (32, 33) and to study metabolic
dependency in environmental populations (34). By coupling this approach with DNA-
SIP, one can distinguish MAGs from organisms that assimilate 13C from labeled sub-
strates by separating and sequencing the 13C-enriched DNA (see Fig. S1 at https://osf
.io/tb3n4/). Metagenomic SIP proved effective in resolving traits of cellulolytic and
lignolytic populations in forest soil by improving MAG assembly (14). DNA-SIP can be
used to estimate the degree of 13C labeling of individual MAGs by measuring the
change in buoyant density across the CsCl gradient (35, 36). This gradient-resolved
approach offers the capacity to distinguish between highly 13C-enriched DNA, corre-
sponding to taxa with primary access to cellulosic C, less 13C-enriched DNA, corre-
sponding to microbes with peripheral access to cellulosic C, and unenriched DNA from
the broader soil community. Information about genomic content coupled to the
degree of access to cellulosic C can be used as evidence of ecological trade-offs, such
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as traits of metabolic dependency (auxotrophy) or antibiotic production, in members
of the cellulose economy.

We conducted a metagenomic SIP experiment with 13C-labeled cellulose to test
hypotheses about the ecological trade-offs occurring in microbes that access carbon
during cellulose degradation. We used comparative genomics to identify features of
genome bins grouped by their degree of 13C enrichment (according to gradient-
resolved SIP) and competency for cellulose degradation. We expected that cellulolytic
microbes would be enriched in secondary metabolite gene clusters (SM), such as those
that synthesize antibiotics, to control access to community resources. We further
hypothesized that 13C-enriched, noncellulolytic microbes would exhibit signatures of
metabolic dependency based on the degree of auxotrophy and/or capacity for degrad-
ing microbial necromass (i.e., numbers of genes encoding nucleases, peptidases, chiti-
nases, and other hydrolytic enzymes). We expected early colonizers of cellulose, as
identified in a companion study (11), to depend less on the products of community
metabolism than late colonists, evidenced by degree of auxotrophy. We also identified
traits related to surface colonization, which we anticipated would facilitate interactions
on insoluble fibers (37). Results were validated against reference genomes and with
metaproteomics to confirm gene expression by target groups. This study aims to eval-
uate the ecological trade-offs among members of the cellulose economy and to pro-
pose a framework for understanding community dynamics responsible for cellulose
decomposition in soils.

RESULTS
Overview of metagenome assembly and designation of 13C labeling. Initially, we

performed a DNA-SIP experiment with [13C]cellulose to evaluate the temporal dynam-
ics of decomposition over a 30-day period, profiled using 16S rRNA gene amplicon
sequencing as previously described (11). Here, we performed gradient-resolved DNA-
SIP using the 13C-labeled DNA at day 30 to discern differences in the degree of 13C
incorporation and compare populations based on their relationships to cellulosic C.
Deep sequencing was performed on a single gradient-resolved sample to maximize
the recovery of genomic information from all members of the cellulose economy to
improve our capacity to perform comparative genomics. Comparative genomics was
performed in parallel on reference genomes sourced from the NCBI based on similarity
to the full-length 16S rRNA gene.

Shotgun metagenomic sequencing of 13C-labeled DNA recovered a total of 1.1 bil-
lion reads after quality filtering, estimated by nonpareil (38) to cover 80% of genomic
diversity in the DNA pool. Metagenome assembly produced a total of 356,131 contigs
greater than 2.5 kb, amounting to a total length of 1.8 Gb (;230 genomes of 8Mb).
The degree of 13C enrichment was estimated for each contig by comparing the CsCl
gradient profile to simulated natural abundance profiles (see Fig. S2 at https://osf.io/
tb3n4/). More than half of all contigs were designated either strongly or weakly 13C
enriched (total length, 921Mb), while the remainder were from genomes of abundant
soil taxa that lacked evidence of 13C labeling (766Mb). The occurrence of unlabeled
DNA in heavier fractions is common in SIP experiments, primarily reflecting differences
in the migration of DNA fragments across the gradient based on G1C content (39).
Contigs clustered into coherent sets according to pentanucleotide frequency which
grouped by patterns of 13C labeling and taxonomy (Fig. 1a and b), and not average
G1C content (Fig. 1c). The random forest model used to predict enrichment status had
an overall accuracy of 89.1% with high sensitivity and specificity for both strongly
enriched (98.3% and 86.4%, respectively) and unenriched (100% and 93%) contigs (see
details in the supplementary methods and Table S1 at https://osf.io/tb3n4/).

Phylobin characteristics. Contigs were grouped into phylobins based on 13C-label-
ing status and taxonomic classification (rank at the level of order). The large size of
many phylobins can be attributed to natural pangenomic diversity (intraspecies) and
to the grouping of mixed populations by order (interspecies), as revealed by the analy-
sis of single-copy genes and single nucleotide polymorphisms per single-copy gene
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(see details in supplementary methods at https://osf.io/tb3n4/). A total of 47, 2, and 46
phylobins greater than 1Mb were produced from strongly, weakly, and unenriched
contig sets, respectively (see Table S2 at https://osf.io/tb3n4/). Of the 95 total phylo-
bins, 38 were deemed high quality (.75% completeness) and were divided into four
categories based on enrichment status and cellulolytic potential (inferred from the
presence of endoglucanases): strongly 13C enriched and cellulolytic (nstrong = 12),
strongly 13C enriched and noncellulolytic (nstrong = 8), weakly 13C enriched and noncel-
lulolytic (nweak = 2), and unenriched (n=16). Each phylobin represents a genomic-eco-
logical unit, rather than an individual genome, encompassing genomes from at most
four to seven genera for enriched and unenriched phylobins, respectively, based on
the diversity of assembled full-length 16S rRNA genes (Fig. 2). Both phylobins and rep-
resentative reference genomes from 13C-enriched cellulolytic taxa were larger (mPhyBin =
24.7Mb; mRep = 7.1Mb) than those from 13C-enriched noncellulolytic taxa (mPhyBin =
12.5Mb; mRep = 5.2Mb; Wilcoxon test, P# 0.05) and unenriched taxa (mPhyBin = 11.4Mb;
mRep = 5.0Mb; P, 0.01).

Structure of the cellulose economy. Taxa designated as strongly 13C enriched and
cellulolytic (i.e., encoding endoglucanases) represented the greatest proportion of
unassembled small subunit (SSU) gene fragments in metagenomes. The most abun-
dant were classified into well-known genera of cellulolytic soil organisms, including
Cellvibrio, Herpetosiphon (Chloroflexi), and members of the fungal order Sordariales (pre-
dominantly Chaetomium), as well as lesser-known cellulolytic genera, such as Devosia
and Sphingomonas (Fig. 2). Peptides from these five taxa were also abundant within
the total metaproteome (ntotal = 90,557 peptides; 33,765 unique proteins), occupying
the following percentages of total peptides: Rhizobiales, 6.9%; Cellvibrionales, 2.6%;
Sphingomonadales, 2.6%; Herpetosiphon, 1.0%; and Sordariales, 0.5%. Endoglucanases
were detected in contigs classified into 22 of the 30 genera designated as strongly 13C

FIG 1 A visual representation of the whole metagenomic assembly reveals the clustering of contigs
with respect to taxonomic classification (a), 13C enrichment designation (b), and genome GC content
(c). Contigs (.3.5 kb) were clustered by pentanucleotide frequency using the t-SNE multidimension
reduction algorithm. This figure reveals the correspondence between taxonomic classification and 13C
enrichment status (a versus b) and that enrichment status was not correlated with GC content (b
versus c). An interactive html version in the supplementary data package at https://osf.io/tb3n4/
allows for detailed exploration of taxonomic annotations for all contigs.
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FIG 2 Members of the cellulose-degrading consortium were defined by their taxonomy and functional capabilities encoded in metagenome-
assembled phylobins (PBin) and representative genomes (Rep). Phylobins were categorized by their 13C enrichment and cellulolytic capacity
and ranked along the y axis by the relative abundance of SSU rRNA gene fragments recovered (indicated by bar plots). Representative
genomes were identified according to similarity of full-length 16S rRNA genes (column 1) and were grouped with their respective phylobins.
Representative genomes with less than 97% similarity to a phylobin 16S rRNA gene are shaded in gray. Several phylobins were comprised of
genomes from multiple genera, and the size of each (in megabases) and the percentage of peptides assigned to each phylobin are provided.
The remaining columns show the presence/absence of genes for endoglucanases or those involved in surface attachment, surface motility (M),
and secondary metabolite (SM) production. Boxes are shaded gray if a member of that genus reportedly possesses the ability for attachment or
surface motility. Secondary metabolite production is designated if peptides corresponding to antimicrobial gene clusters were detected in the
metaproteome. Only the most abundant “unenriched” phylobins are shown (for a full overview, see Table S4 at https://osf.io/tb3n4/).
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enriched, consistent with their presence in reference genomes (Fig. 2; see Table S3 at
https://osf.io/tb3n4/). The 22 genera designated strongly 13C enriched and cellulolytic
comprised 29% of the total SSU rRNA gene fragments. In contrast, the seven genera
designated strongly 13C enriched and noncellulolytic (Fig. 2) comprised 2.3% of recov-
ered SSU rRNA reads. The composition of phylobins was in close agreement with prior
16S rRNA gene amplicon data (11) based on gene similarity and taxonomic classifica-
tion (see Table S3 at https://osf.io/tb3n4/).

A diverse set of endoglucanases was recovered from phylobins, revealing a snap-
shot of the functional diversity of cellulolytic populations. A total of 430 unique endo-
glucanase homologs were identified (at a.80% identity threshold) belonging to 40
different carbohydrate-active enzyme (CAZy) families/subfamilies. Eighty-two of these
endoglucanases were present within gene clusters that contained a carbohydrate-
binding module. A total of 52 peptides in the metaproteome matched endogluca-
nases; the most abundant was a GH9 from Cellvibrio (Table 1). The second and third
most abundant endoglucanases in the metaproteome were encoded by fungi (GH131
and GH7). Overall, most endoglucanases in the metaproteome were encoded by fungi
(57%), which was disproportionate to the total relative abundance of fungal peptides
(1.2%) in the metaproteome.

TABLE 1 GH and LPMO gene families encoded in cellulolytic phylobins and detected in
metaproteomea

aDiverse glycosyl hydrolase (GH) genes and a single family of lytic polysaccharide monooxygenases (LPMO)
were identified in cellulolytic phylobins, many of which matched peptides detected in the metaproteome
(the number and type of each peptide is indicated). Taxonomic classifications and GH family are provided
for the endoglucanase gene fragments found within each phylobin (lowest LCA classified to the order (o_),
family (f_), or genus (g_) level). Taxon-specific endoglucanase families are indicated in bold. Five peptides
matched endoglucanase genes not belonging to any phylobins. Uncl., unclassified.
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Evidence for metabolic dependency and competitive exclusion. To evaluate
potential interactions among 13C-labeled taxa, we assessed the degree of auxotrophy
(as an indicator of metabolic dependency) and presence of SM-encoding genes (antibi-
otic-based competition) in phylobins and their representative genomes. No phylobin
or genome was fully prototrophic or auxotrophic for all biosynthetic pathways eval-
uated (n = 32), with the average phylobin being auxotrophic for 6 amino acids, 1 cofac-
tor, and 2 vitamins and the average representative genome being auxotrophic for 5
amino acids, 1 cofactor, and 1 vitamin. The extent of auxotrophy did not differ signifi-
cantly between 13C-enriched cellulolytic and 13C-enriched noncellulolytic phylobins or
representative genomes (Fig. 3) but did differ among dominant taxa within each
group.

The most prototrophic representative genomes were Cellvibrio (31/32 pathways
detected; genome size = 5.2Mb; designated 13C enriched, cellulolytic), Devosia (31/32;
4.2Mb; 13C enriched, cellulolytic) and Leptothrix (31/32; 4.9Mb; unenriched, noncellulo-
lytic) (see Table S4 at https://osf.io/tb3n4/). The most auxotrophic representative
genomes were Planctomyces (13/32; 3.2Mb; 13C enriched, noncellulolytic), Nannocystis
(16/32; 12.1Mb; 13C enriched, noncellulolytic), and Vampirovibrio (16/32; 3.0Mb; 13C
enriched, noncellulolytic). These trends were consistent in phylobins, where Cellvibrionales
(30/32; ranked 1st in terms of biosynthetic capacity among the 38 phylobins examined)
and Rhizobiales (28/32; ranked 3rd) were among the most prototrophic, while
Planctomycetales (24/32; 20th), Vampirovibrionales (15/32; 34th), Chthoniobacterales (10/32;
37th; 13C enriched, noncellulolytic), and Chloroflexales (9/32; 38th; 13C enriched, cellulolytic)
were among the most auxotrophic. Overall, representative genomes from the phylum
Actinobacteria were significantly more auxotrophic than Proteobacteria (mactino = 24.2 ver-
sus mproteo = 25.3; Wilcoxon test, P = 0.04) driven largely by Alphaproteobacteria (malpha =
26.2, P = 0.003; see Fig. S3 at https://osf.io/tb3n4/). This trend was consistent, but not sig-
nificant, in phylobins (mactino = 23.8 versus malpha = 26.0). Representative genomes for
Actinobacteria and Alphaproteobacteria did not significantly differ in size (mactino = 5.8Mb
versus malpha = 5.3Mb; Wilcoxon test, P = 0.46) or completeness (m = 99.6% in both; P =
0.71).

The number of SM genes encoded in 13C-enriched cellulolytic phylobins (mrep =
14.0; mPhyBin = 40.0) was significantly higher than that in 13C-enriched noncellulolytic

FIG 3 (a) A comparison of the number of complete biosynthetic pathways (prototrophy) revealed that 13C-enriched noncellulolytic (blue) phylobins and
representative genomes were slightly less prototrophic than those which were either 13C-enriched cellulolytic (white) or unenriched (red). On average,
these differences were not significant (Kruskal-Wallis; phylobins, P = 0.6; representative genomes, P = 0.2), although major populations within each group
(Planctomyces versus Cellvibrio) exhibited consistent differences in accordance with hypotheses. (b) Prototrophy was significantly correlated with genome
size for phylobins (r = 0.39; P = 0.01) but not representative genomes (r = 0.14; P = 0.28). A ranking of prototrophy in all phylobins and representative
genomes is available in Table S4 at https://osf.io/tb3n4/.
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(mrep = 5.8; mPhyBin = 12.4; Wilcoxon test, P, 0.01) or unenriched (mrep = 4.8; mPhyBin =
10.0) phylobins. The trend remained after normalization to total phylobin (2.2 read
counts per million [rcpm] versus 1.9 rcpm and 1.3 rcpm) or reference genome size (1.6
rcpm versus 1.0 rcpm and 1.0 rcpm). The genomes encoding the greatest number of SMs
were Sporocytophaga, several Actinobacteria (Streptomyces, Lentzea, Dactylosporangium,
and Kitasatospora) ,and Cellvibrio (see Table S4 at https://osf.io/tb3n4/). Genes encoding
type 1 polyketide synthases were consistently more abundant in 13C-enriched cellulolytic
taxa than the other two groups (see Fig. S4 at https://osf.io/tb3n4/). Nonribosomal peptide
synthetases and bacteriocins were more frequently encoded in both 13C-enriched groups,
but only peptides matching cellulolytic taxa were present in the metaproteome (see Fig.
S4 at https://osf.io/tb3n4/). The metaproteome was dominated by terpene synthases from
Actinobacteria, bacteriocins from Cellvibrio, and nonribosomal peptide synthetases from
Sordariales. In contrast to trends in auxotrophy, representative genomes of 13C-enriched
cellulolytic Actinobacteria encoded significantly higher numbers of SMs (m = 20.0; n=6;
P = 0.03) than the cellulolytic Alphaproteobacteria (m = 5.3; n = 6).

The orders Planctomycetales and Sphingomonadales were represented by phylobins
that were weakly 13C enriched, alongside those that were strongly 13C enriched and
unenriched (Fig. 2). Only the strongly 13C-enriched Sphingomonadales phylobin encoded
endoglucanases and more SMs (predominantly bacteriocins) than the weakly 13C-
enriched and unenriched phylobins (2.1 rcpm, 0.4 rcpm, and 1.3 rcpm, respectively).
Both 13C-enriched Sphingomonadales phylobins shared the same pattern of auxotrophy
(see Fig. S5 at https://osf.io/tb3n4/). No Planctomycetales phylobins encoded endogluca-
nase nor a substantial number of SMs.

Comparison of cellulolytic and hydrolytic potential. The functional gene content
of representative genomes accounted for substantial variation in enrichment status
(Fig. 4). The trend was driven primarily by the relative abundance of glycosyl hydro-
lases (GH), which were 1.5- to 3-fold higher (after normalization for genome size) in
13C-enriched cellulolytic phylobins and corresponding reference genomes, respec-
tively. This trend was evident in all gene families associated with lignocellulose degra-
dation (GH, carbohydrate-binding modules [CBMs], auxiliary activity enzymes [AA], and
polysaccharide lyases [PL]), which collectively explained 63% of the variation in com-
munity functional composition along nonparametric multidimensional scaling axis 1
(NMDS1) (Fig. 4a; see Table S5a at https://osf.io/tb3n4/). Genomes were also separated
along the secondary axis (NMDS2) based on genome size and peptidase and motility
gene content, which explained 16.3, 16%, and 19% of variation, respectively (see Table
S5a). The degree of auxotrophy did not correlate with variation in functional gene con-
tent in either representative genomes or phylobins (see Table S5b at https://osf.io/
tb3n4/). In addition, the relative abundance of biomass-degrading enzymes (e.g., pepti-
dases and nucleases) did not differ with respect to degree of 13C enrichment or cellulo-
lytic capacity, either in phylobins or representative genomes. In contrast, broad differ-
ences in functional gene categories were observed between Actinobacteria and
Proteobacteria (Fig. 4a).

Temporal dynamics in cellulose economy. Early and late-stage colonizers of cellu-
lose were identified according to genome-based predictions of growth rate (see Table
S4 at https://osf.io/tb3n4/). Taxa designated as 13C enriched and cellulolytic were pre-
dicted to have faster generation times based on phylobins (3.0 h) and representative
genomes (3.1 h) than 13C-enriched noncellulolytic taxa (5.7 h and 5.6 h, respectively)
(Fig. 5a), although these differences were not significant (Kruskal-Wallis, Pphybin = 0.33
and Prep = 0.52). The 13C-enriched noncellulolytic taxa exhibited a bimodal distribution
of predicted growth rate (Fig. 5a), and the set of genomes with slower generation
times (generation time. 5 h) was significantly more auxotrophic (mslow = 15.8/32 pro-
totrophies) than taxa with faster predicted generation times (,3 h; mfast = 23.8/32;
Wilcoxon test, P = 0.05).

The genome-based characterizations of early and late-stage colonizers were con-
sistent with temporal patterns of taxa observed in time course amplicon sequencing
data in a companion study (11). The highly prototrophic taxa Cellvibrio and Devosia
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increased in relative abundance earliest, peaking in 13C enrichment at days 7 to 14 and
declining by day 30 (Fig. 5b; see Fig. S6a at https://osf.io/tb3n4/). Chaetomium popula-
tions were also early colonizers, showing 13C enrichment by day 7 (see Fig. S7 at
https://osf.io/tb3n4/). In contrast, the relative abundance of Actinobacteria was less
dynamic, and these organisms tended to become labeled on, or after, day 14. Taxa pre-
dicted to be the most slowly growing, and identified as 13C enriched, noncellulolytic,
and highly auxotrophic (Planctomyces, Sphingomonas, and members of Verrucomicrobia),

FIG 4 The functional gene contents of representative genomes were compared by NMDS using the Bray-Curtis
dissimilarity of gene abundances normalized to genome size. Most variation among representative genomes was
attributable to carbohydrate active enzyme content (63% of NMDS1) (see Table S5 at https://osf.io/tb3n4/). Four panels
showing the same ordination are colored according to the taxonomic classification at the phylum level (a), the rrn operon
copy number (b), the abundance of glycosyl hydrolases (c), and peptidase abundance (d). Genomes formed clusters
according to cellulolytic potential (analysis of similarities [ANOSIM], R = 0.498, P, 0.001) with the centroid of each group
displayed in panel c. Genomes loosely clustered by phylogenetic differences between Actinobacteria and Proteobacteria,
although lacking statistical support (ANOSIM, R= 0.1, P = 0.2), with the centroid (star symbol) for each shown in panel a. In
panel b, functional gene data were fitted to the ordination, with the arrow length proportional to the correlation between
each variable and ordination axes. Abbreviations: GH, glycosyl hydrolase; SM, secondary metabolite gene cluster; CBM,
carbohydrate-binding module; rrn, ribosomal operon; PL, polysaccharide lyase; AA, auxiliary activity; size, genome size.
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began to increase in relative abundance only after day 14 and were maximally 13C
enriched on day 30 (Fig. 5c; see Fig. S6c at https://osf.io/tb3n4/).

Surface adhesion and surface motility. Phylobins from cellulolytic taxa were more
likely to encode the capacity for surface adhesion and/or surface motility than other
groups, including twitch motility, pilus systems, and fimbriae (see Fig. S8a at https://osf
.io/tb3n4/). Surface attachment proteins were abundant in reference genomes from
13C-enriched taxa (both cellulolytic and noncellulolytic) and in phylobins classified as
Rhizobiales and Caulobacterales (Fig. S8b). Adhesion proteins used in gliding motility
(aglZ and sprB) were present in reference genomes of cellulolytic taxa but absent from
phylobins.

DISCUSSION

We performed comparative genomics using metagenomic SIP data to test hypothe-
ses about ecogenomic traits occurring in cellulolytic and noncellulolytic microorgan-
isms participating in the cellulose economy. Taxa identified as 13C enriched and cellulo-
lytic had larger genomes and a greater number of genes encoding CAZymes,
secondary metabolites, surface motility, or surface attachment and tended to have
faster generation times than 13C-enriched noncellulolytic and unenriched taxa. This evi-
dence supports our hypothesis that the fate of cellulose carbon is mediated by ecologi-
cal trade-offs between cellulolytic and noncellulolytic taxa. Furthermore, 13C-enriched
cellulolytic taxa encoded diverse endoglucanases, representing 39 different subfamilies,

FIG 5 Genome-based predicted generation times of taxa (a) corresponded with temporal patterns in relative abundance in soil
microcosms amended with cellulose (b and c), where 13C-enriched cellulolytic phylobins and representative genomes tended to
have higher growth rates than noncellulolytic phylobins and their representatives. In panel a, the differences in genome-based
predictions of generation time were, on average, not significant (Kruskal-Wallis, Pphybin = 0.33 and Prep = 0.52). However, the most
abundant 13C-enriched cellulolytic and noncellulolytic taxa, Cellvibrio and Planctomycetaceae, respectively, exhibited characteristics
of faster (b) and slower (c) growth, consistent with expectations of the degree of their metabolic dependency. Several other major
taxa, including Devosia, Sphingomonas, and members of the Verrucomicrobia, exhibited similar trends (see Fig. S6 at https://osf.io/
tb3n4/). In panels b and c, each panel is divided into two data sets: one corresponding to the relative abundance of bacterial
populations in whole DNA extract from soil amended with cellulose, and the other corresponding to the relative abundance in
13C-enriched DNA pools from soils amended with 12C natural abundance or 13C-labeled cellulose. The y axis (read counts per
thousand) corresponds to the average relative abundance of heavy CsCl gradient fractions (F2 – F10). A complete ranking of
predicted generation times for phylobins and representative genomes is available in Table S4 at https://osf.io/tb3n4/.
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but no single taxon encoded more than a third of these enzymes, supporting the impor-
tance of synergistic interactions among degraders. Auxotrophy was common among
both 13C-labeled cellulolytic and noncellulolytic taxa, indicating that most taxa acquire
essential metabolites from other community members. The average phylobin was auxo-
trophic for 9 of 32 pathways evaluated, although the highest levels of auxotrophy
occurred among noncellulolytic 13C-labeled taxa.

The two most prominent 13C-labeled cellulolytic taxa, Cellvibrio and Chaetomium,
are commonly abundant in soil from agroecosystems. Both dominated access to cellu-
losic C in previous SIP cellulose studies of agricultural soils (12, 17) and are favored by
tillage (40–43), while Chaetomium populations are early successionists in clear-cut for-
est soil (18). The most abundant endoglucanase in our metaproteome, a GH9 from
Cellvibrio, was homologous to the main cellulase found in worm castings from agricul-
tural soil (NCBI accession no. ACY24809) (44). The predominance of these ruderal taxa,
which we found to be fast growing and self-sufficient (i.e., prototrophic), likely reflects
the frequent soil disturbances in agroecosystems. Therefore, the ecological attributes
of the cellulose economy we observed may be characteristic of managed agricultural
lands. The use of sieving to prepare our soil microcosm might have favored disturb-
ance-adapted organisms. However, in a similar SIP-cellulose study, where soils from dif-
ferent ecosystems were subject to the same microcosm conditions, Cellvibrio popula-
tions were specific to and dominant in agricultural soil (12). It remains to be seen how
the composition and relative importance of the ecological classes we observed differ
in less frequently disturbed soils.

Ecological classes of the cellulose economy. Our results demonstrated that access
to cellulosic carbon is mediated by trade-offs related to the capacity to produce carbo-
hydrate-active enzymes and antibiotics, biosynthetic capacity (i.e., prototrophy),
growth rate, and adaptation to colonize surfaces. Our results revealed at least three
broad ecologically coherent classes which accessed 13C from cellulose: (i) fast-growing,
biosynthetically competent cellulolytic taxa (e.g., Cellvibrio, Chaetomium, and Devosia),
(ii) slower growing, metabolically dependent (more auxotrophic), cellulolytic taxa (e.g.,
Actinobacteria and Herpetosiphon), and (iii) slower growing, metabolically dependent
(highly auxotrophic), noncellulolytic taxa (e.g., Planctomycetales, Verrucomicrobia, and
Vampirovibrionales). Certainly, a wide range of adaptive traits will affect access to cellu-
losic carbon during decomposition, but these classes provided a useful framework for
grouping the major ecogenomic traits we observed. We also propose that these classes
may reflect the broader underlying ecological characteristics of microbial consortia
involved in decomposing various forms of particulate organic matter in soil.

Independent primary degraders. Bacteria in the class of independent primary
degraders are first to colonize cellulosic materials based on their cellulolytic compe-
tency, self-sufficiency, and rapid growth. On average, the phylobins and representative
genomes of 13C-enriched cellulolytic taxa were more prototrophic and had lower mini-
mum generation times than their 13C-enriched noncellulolytic counterparts, although
these results were statistically insignificant due to the phylogenetic and ecological di-
versity within groups. Cellvibrio and Devosia were among the most enriched taxa in the
[13C]DNA pool (1st and 4th, respectively) and were the two most prototrophic of any
genome or phylobin examined. In a companion study, Cellvibrio and Devosia popula-
tions peaked earlier than any other 13C-enriched taxa and were in decline as depend-
ent taxa increased in relative abundance (11). Chaetomium exhibited similar early 13C
enrichment, occupying upwards of 20% of the [13C]DNA pool by day 7 in a second
companion study at the same field site (45). Our method for predicting prototrophy
was not validated for eukaryotic genomes; yet, species of Chaetomium are prototro-
phic—growing on cellulose in minimal medium without the addition of amino acids or
cofactors (46). The rapid growth and self-sufficiency of Cellvibrio and Chaetomium were
coupled with a strategy of competitive exclusion via the production of antibiotics such
as bacteriocin, likely a cellvibriocin (47), and fungicides (48–50). Notably, the early dom-
inance of Cellvibrio and Chaetomium populations and later shift to Actinobacteria were
reported in a separate SIP-cellulose study in agricultural soil (17). We expect the
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competitive nature of these early colonizers and their metabolic by-products to influ-
ence the ability of interdependent primary degraders and noncellulolytic taxa to access
C derived from cellulose degradation.

Interdependent primary degraders. Bacteria in the second class, i.e., interdepend-
ent primary degraders, primarily Actinobacteria but also Herpetosiphon (Chloroflexi),
were cellulolytic but exhibited higher levels of auxotrophy and SM production than
early colonists. Populations of Actinobacteria lagged in comparison to Cellvibrio, with
the first signs of 13C labeling appearing at day 14 with inconsistent changes in relative
abundance over time (11). These trends suggest a greater dependency on external nu-
trient sources, affected by top down (i.e., mortality-driven) or bottom up (i.e., nutrient
limitation because of competition for nutrients) controls, and may also reflect lower
growth rates. Actinobacteria encoded and produced the greatest number of SMs and
SM peptides. These were primarily terpenoids, which can function in interspecific sig-
naling in soil, potentially facilitating mutualistic interactions upon which Actinobacteria
depend (51). The potential benefit of interdependency, as a primary degrader, was
apparent in the consistent auxotrophy of Actinobacteria for four of the costliest nonar-
omatic amino acids to synthesize, namely, the branched-chain acids isoleucine (ranked
1st) and leucine (2nd), the sulfur-containing methionine (3rd), and the amino-group-
containing lysine (4th) (52, 53). Auxotrophy for branched-chain amino acids is a signa-
ture of genome reduction and dependency in other ubiquitous soil bacteria (54). We
hypothesize that the fitness of interdependent primary degraders depends on commu-
nity interactions, facilitated by their cellulolytic capacity and SM production.

Secondary consumers: mutualists, opportunists, and parasites. The third class,
that of secondary consumers, was defined by characteristics of their dependency on
the metabolism of primary degraders, indicating that these taxa are secondary con-
sumers of cellulosic carbon. Members of this group all possessed several signatures of
metabolic dependency, which included high levels of auxotrophy, the lack of necessary
genes for cellulose degradation, and late-stage and low levels of 13C enrichment.
The most prominent secondary consumers were members of Planctomycetales,
Vampirovibrionales, and Verrucomicrobia (Luteolibacter, “Candidatus Xiphinematobacter,”
and 01D2Z36). These taxa all reached maximal relative abundance only after independ-
ent primary degraders had become enriched (Cellvibrio, Devosia, and Chaetomium) and
remained abundant even after their decline. This pattern suggests a dependence on
products of community metabolism either through cometabolism, the consumption of
metabolic by-products, or the consumption of macromolecules released during the turn-
over of microbial biomass. The consequence of these dependencies (i.e., mutualistic ver-
sus antagonistic, etc.) could not be determined from our data, but previous research
indicates that these taxa encompass a range of symbiotic relationships, including mutu-
alism, opportunism, and parasitism (MOP).

Planctomyces are commonly found to colonize the surfaces of marine algae and to
metabolize polysaccharides but not cellulose (55–57). They purportedly assimilate oli-
gosaccharides into their cells, indicating the ability to scavenge higher-molecular-
weight degradation by-products (13, 58–60). The capacity of Planctomyces to attach to
surfaces with holdfast and their distinct tolerance to a range of antibiotics would
advantage an opportunistic lifestyle, particularly among antibiotic-producing primary
degraders (61–63). The cultured representatives for the two other highly auxotrophic
13C-enriched noncellulolytic taxa are obligate symbionts, namely, Vampirovibrio and
“Candidatus Xiphinematobacter.” The former are algal parasites that encode a range of
GHs (64) but lack endoglucanases, and the latter can be endobionts of nematodes and
are abundant in forest litter, cellulose-degrading consortia, or in association with
Basidiomycota (65–68). “Candidatus Xiphinematobacter” and Planctomyces have been
previously identified as part of the cellulose economy in agricultural soil using SIP, with
the former hypothesized to be a late-stage, mutualistic cellulosic C consumer (10, 15).

Differentiating between an opportunistic or mutualistic relationship among pri-
mary degraders and noncellulolytic taxa presents a challenge where lignocellulose
is being decomposed. The degradation of other plant biomass by noncellulolytic
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taxa can benefit primary degraders, supported by the fact that secondary consum-
ers possess the capacity to degrade other carbohydrate polymers, like Vampirovibrio and
Planctomyces (57, 64). One set of phylobins provided evidence for what could be consid-
ered opportunistic “cheating” (24). Phylobins from Sphingomonadales differed in terms of
weak and strong 13C enrichment yet shared the same pattern of auxotrophy. The strongly
enriched phylobins encoded several endoglucanases and bacteriocins, while the equally
sized, weakly enriched phylobins lacked these capabilities. While we cannot rule out some
form of mutualism, the weakly 13C-enriched phylobin did not encode any unique CAZyme
families associated with hemicellulose or pectin degradation. These data suggest that the
strongly labeled cellulolytic strain is degrading [13C]cellulose extracellularly and the weakly
13C-enriched strain can access degradation products as well as other sources of unlabeled
carbon present in soil. The capacity of Sphingomonas to degrade cellulose through the ac-
tivity of extracellular enzymes has been reported (69, 70).

Role of surface ecology. Several major populations of microbes that accessed
13C from cellulose were capable of surface adherence and/or surface motility.
Genes encoding surface attachment were present in phylobins, or have been previ-
ously reported (Fig. 2), in Rhizobiaceae (Ensifer/Sinorhizobium, Rhizobium, and
Agrobacterium), Hyphomicrobiaceae (Devosia), Sphingomonadaceae (Sphingomonas),
and Caulobacteraceae (Asticcacaulis, Brevundimonas, and Caulobacter), as well as in
Pseudoxanthomonas and Planctomycetaceae (Planctomyces and Rhodopirellula)
(71–73). Each of these genera, except for those in Planctomycetaceae, are repre-
sented by isolates capable of degrading cellulose (74–81). For these organisms,
attachment would provide preferential access to the extracellular by-products of
cellulose degradation. This phenomenon is exemplified by the abundance of sugar
transporters located on the stalk used by Caulobacter to adhere to surfaces (82, 83).
Attachment may also facilitate cooperation to crowd out competitors from access-
ing resources, as observed in the social behavior of Caulobacter during xylan degra-
dation (84) or in the coordination of extracellular degradative processes by the sur-
face-gliding bacteria Herpetosiphon and Sorangium (85, 86). Social interactions and
cell surface density are critical determinants of the rate and efficiency of decompo-
sition of particulate carbon (22). Thus, the dynamics of surface attachment have
ramifications for microbial ecology and evolution, as observed in the rumen (87, 88)
and aquatic niches (22, 31, 89), which have not yet been studied in soil or in relation
to biogeochemical cycling. For example, our observations suggest that the univer-
sal priming effect induced by cellulose (90) might result from promoting the
growth of surface-adapted taxa which can subsequently gain access to insoluble,
less bioavailable C pools, such as particulate and surface-associated organic matter
(91).

Diversity at the subgenus level in the cellulose economy. Deep shotgun metage-
nomics provided a comprehensive set of genomes from taxa present in the cellulose
economy but was ineffective at resolving the genomes of closely related species.
Phylobins were comprised of large pangenomes, which limited our ability to test for
adaptive gene loss among closely related species, known to be important in the evolu-
tion of metabolic dependencies (24, 92). The recovery of large single-genus phylobins
for Myxococcales (Sorangium), Cellvibrionales (Cellvibrio), Planctomycetales (Planctomyces),
and Micrococcales (Microbacterium) provided evidence of sizeable pangenomic genetic
diversity, which might reflect niche partitioning among close relatives. However, the
degree of 13C enrichment within these single-genus phylobins did not differ, except for
Planctomycetales and Sphingomonadales (i.e., “weak” versus “strong” phylobins). We con-
clude that few differences in the capacity to access cellulosic carbon was evident among
closely related populations.

Conclusions. The taxonomic composition of 13C-labeled populations was con-
sistent with past SIP-cellulose experiments, represented by populations of Sordariales
(Chaetomiaceae), Actinobacteria (Microbacteriaceae, Streptomycetaceae, and Micrococcaceae),
Alphaproteobacteria (Rhizobiaceae, Caulobacteraceae, and Sphingomonadaceae),
Deltaproteobacteria (Polyangiaceae), Gammaproteobacteria (Cellvibrionaceae), Bacteroidetes

Ecogenomics and the Microbial Cellulose Economy ®

January/February 2021 Volume 12 Issue 1 e03099-20 mbio.asm.org 13

 on January 5, 2021 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://mbio.asm.org
http://mbio.asm.org/


(Cytophagaceae and Sphingobacteriaceae), Planctomyces (Planctomycetaceae and
Pirellulaceae), and Verrucomicrobia (Verrucomicrobiaceae, Opitutaceae, and Chthoniobacteraceae),
although missing Betaproteobacteria (9–18). Yet, for the first time, comparative
genomics was used to reveal the ecogenomic traits of these taxa and to deepen
understanding of the ecological strategies they employ to gain access to cellulosic C.
We identified self-sufficient cellulolytic bacteria and fungi (e.g., Cellvibrio and
Chaetomium) that sought to restrict access via competitive exclusion and other more
interdependent cellulolytic bacteria (e.g., Actinobacteria and Herpetosiphon), whose
fitness depended on the metabolic by-products of the community. A third class of
noncellulolytic taxa that accessed cellulosic C (e.g., Planctomycetes, Vampirovibrio,
Verrucomicrobia) were characterized by dependency on community resources that
encompassed mutualistic, opportunistic, and parasitic interactions, which have not
yet been fully described due to challenges in cultivability (64). Overall, our findings
attest to the existence of an economy underscored by ecological interactions and
novel physiological adaptations that impact the degradation of cellulose in soil.
These findings improve our capacity to interpret and quantify the effect of commu-
nity structure and function on decomposition and carbon cycling.

MATERIALS ANDMETHODS
Sample description and recovery of 13C-enriched DNA. DNA-SIP was performed using an agricul-

tural soil incubated with 13C-labeled cellulose for 30 days to capture the labeling of primary and second-
ary populations, as performed previously (11). In brief, a microcosm was prepared with 10 g of soil from
a tilled agricultural field under organic management in Penn Yan, New York, as previously described
(93). The soil was sieved (2mm), homogenized, wetted to and maintained at 50% water holding
capacity, corresponding to 70% water filled pore space (94), and preincubated for 2 weeks prior to initia-
tion of the experiment. After the initial soil respiration subsided, an amendment designed to approxi-
mate the composition of plant biomass was added at a total of 2.9mg C g21 soil (dry weight). By weight,
the mixture was comprised of 38% 13C-labeled bacterial cellulose (99 atom% 13C), 23% lignin alkali, 20%
xylose, 3% arabinose, 1% galactose, 1% glucose, 0.5% mannose, 10.6% amino acids, and 2.9% Murashige
Skoog basal salt mixture (11). Bacterial cellulose was harvested from Gluconoacetobacter xylinus grown
on 99 atom% [13C]glucose as the sole carbon source as previously described (11). After incubation,
extracted DNA was subjected to CsCl density gradient centrifugation and fractionated into 35 100-ml ali-
quots. Shotgun metagenomes were prepared from eight gradient fractions, starting at a buoyant den-
sity (BD) of 1.749 g ml21 (F6) and continuing to a BD of 1.717 g ml21 (F13). A schematic overview of the
methods used in this study is presented in Fig. S1 at https://osf.io/tb3n4/. The 16S rRNA gene and ITS1
region amplicon data from this DNA-SIP experiment (11) and a companion study (45) are available at
the NCBI under BioProject no. PRJNA317227 and PRJNA589050, respectively.

DNA and peptide sequencing. Shotgun metagenomes were generated by multiplexing DNA from
each gradient fraction using the Nextera XT library preparation kit and then sequenced using three lanes
of the Illumina HiSeq 2500 (150 bp, paired end). A subsequent round of sequencing was performed on
each gradient fraction using a single lane of MiSeq (250 bp, paired end) using a library prepared with
the Illumina Nextera XT DNA library prep kit (product number FC-131-1024; Illumina). The raw sequenc-
ing data are archived in the European Nucleotide Archive (BioProject no. PRJEB23737). A full description
of protein extraction, purification, digestion, mass spectroscopy, and peptide annotation is available in
the supplementary methods at https://osf.io/tb3n4/. In brief, protein was extracted from 5 g of soil with
the NoviPure soil protein kit (Qiagen), initially separated and massed using a Waters nano-Acquity M-
class dual pumping UPLC system (Milford, MA) and a Q-Exactive HF mass spectrometer (Thermo
Scientific, San Jose, CA). Twenty-four fractions were subsequently submitted for liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis using an LTQ Orbitrap Velos mass spectrometer
(ThermoFisher, Waltham, MA). Peptides were identified from LC-MS/MS data using predicted protein
sequences from the metagenome and filtered with a false discovery rate cutoff of 1%.

Assembly and classification of SSU RNA genes. Partial 16S and 18S rRNA gene fragments were
identified in unassembled reads to estimate relative abundances. Fragments were identified using
Infernal (v. 1.1.2) (95) and assigned taxonomy using the mothur implementation of the RDP Classifier
(96, 97) with the Silva database (silva.nr_v128) as the reference (98). Full-length 16S or 18S rRNA genes
were assembled using MATAM (99), also using the Silva database. We manually recovered a full-length
16S rRNA gene for Vampirovibrio, which was prevalent in SSU fragments, but not assembled by MATAM
(see details in the supplementary methods at https://osf.io/tb3n4/).

Shotgun metagenome assembly. Metagenomes for each gradient fraction were composited and
assembled using an iterative process to maximize assembly quality (see Fig. S1 and details in the supple-
mentary methods at https://osf.io/tb3n4/). In brief, an initial de novo assembly was performed using
megahit (v1.1.1-2-g02102e1) (100). Contigs shorter than 2,500 bp were discarded (;7% of total). Contigs
were then classified by the lowest common ancestor (LCA) algorithm implemented by MEGAN (v. 6)
(101) based on DIAMOND BLASTX searches (102) against the NCBI nr database (downloaded 3 February
2017). To improve assembly, two additional assemblies were performed on read sets with reduced
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sequence diversity. This reduction was achieved by segregating unassembled, quality-processed reads by
mapping to (i) the LCA taxonomy of the initial assembly, at the rank of order, and (ii) publicly available
genomes represented in the full-length 16S rRNA gene library (see Table S6 at https://osf.io/tb3n4/). All
assemblies were then merged using MeGAMerge (103) with the latest version of MUMMer (104) (v.4beta)
designed for large data sets. Merging improved the assembly statistics as determined by QUAST (105),
increasing N50 from 4,407 to 5,419 (see Table S7 at https://osf.io/tb3n4/).

Designating 13C enrichment of contigs with gradient-resolved SIP. The relative abundance of ev-
ery contig across the density gradient (a gradient profile) was determined by calculating average read
depth using “jgi summarize bam contig depths” from MetaBAT (106) (v. 2.12.1). The gradient profile of
each contig was also simulated with natural abundance of 13C (;1.1 atom% C) to control for variation in
GC content by using methods outlined previously (39, 107). A random forest regression model was used
to assign a categorical degree of 13C enrichment for each contig, namely, “strongly” and “weakly”
enriched, “unenriched,” and “bimodal” (i.e., local maxima in both heavy and light portions of the gradi-
ent), and “undetermined” (see examples in Fig. S2 at https://osf.io/tb3n4/). The following features were
used to build the model: the number of local maxima and minima (and the fraction in which they
occurred) and the average read depth in each fraction for observed and simulated gradient profiles.
Data from 600 manually curated contigs were used to train the model, which was implemented in the R
package caret (108). Model validation was performed on 20% of the training set (see R code in the sup-
plementary data at https://osf.io/tb3n4/).

Genome binning. Common tools for reconstructing MAGs, based on kmer frequency and covari-
ance (in our case across the CsCl gradient), were prone to cross-contamination (see supplementary
methods at https://osf.io/tb3n4/). In addition, MAGs constructed using standard practices failed to
recover genomes from taxa known to be abundant in the metagenome and 13C labeled, including
Chaetomium, Vampirovibrio, and members of Verrucomicrobia and Chloroflexales. Given these limitations,
we opted to define a genomic unit based on 13C enrichment and LCA classification of contigs, which we
term a “phylobin.” Phylobins consisted of contig sets divided by 13C enrichment status (i.e., strong, weak.
and unenriched) and by the taxonomic rank at the level of order (e.g., strongly enriched Cellvibrionales).
We justify this approach accordingly: (i) DNA-SIP selectively enriched for a relatively narrow subset of
taxa within a given order, and (ii) phylogenetically related organisms with similar enrichment status are
likely to share similar genomic and ecological traits. There is no universally appropriate taxonomic rank
or phylogenic depth for grouping organisms, since functional traits are conserved at various phyloge-
netic depths (109). We chose the rank of order as the cutoff because LCA often fails to accurately classify
to the species level taxa that are poorly represented in the NCBI nr database. Hence, aggregating at the
rank of order decreases the risk of losing genomic information. Prior research has shown that aggregat-
ing microbiome data by taxonomic order produced the greatest discriminating power of relevant soil
microbial processes (110). The loss of resolution of individual genomes was compensated for by per-
forming all analyses in parallel on reference genomes chosen based on the similarity of full-length SSU
rRNA genes recovered in our study (msimilarity = 98%, n= 89) or, in some cases, by the only available repre-
sentative genome for that genus or clade (n= 38) (see Table S6 at https://osf.io/tb3n4/).

Functional gene annotation. Functional genes were annotated using curated databases relating to
genes for motility, adhesion, secondary metabolite (SM) biosynthetic gene clusters, and catabolic
enzymes for biomass and cellulose. Fungal genomes were annotated only for SM cellulolytic enzymes.
SMs were annotated using the default settings of antiSMASH for bacteria or fungi (v. 4.1.0) (111). Genes
involved in cellulolytic activity, namely, those encoding glycosyl hydrolases (GH), endoglucanases (spe-
cific GH families), carbohydrate-binding modules (CBMs), polysaccharide lyases (PL), and auxiliary activity
enzymes (AA), were annotated using DIAMOND BLASTX searches against a local version of the CAZy
database, which includes bacterial and fungal genes (112) (downloaded 20 December 2017). The follow-
ing endoglucanase-containing glycosyl hydrolase and lytic polysaccharide monooxygenase families
were deemed to confer cellulolytic ability: GH5(1), GH5(2), GH5(4), GH5(5), GH5(7), GH5(8), GH5(9), GH5
(11), GH5(12), GH5(13), GH5(15), GH5(16), GH5(18), GH5(19), GH5(22), GH5(23), GH5(24), GH5(25), GH5(26),
GH5(27), GH5(28), GH5(29), GH5(30), GH5(31), GH5(36), GH5(37), GH5(38), GH5(39), GH5(40), GH5(41), GH5
(43), GH5(44), GH5(45), GH5(46), GH5(47), GH5(48), GH5(49), GH5(50), GH5(51), GH5(53), GH6, GH7, GH8, GH9,
GH12, GH44, GH45, GH48, GH51, GH61 (now AA9), GH74, GH124, GH131, and AA10. Chitinases were repre-
sented by CAZy families GH18 and GH19. Genes encoding nucleases, adhesion (curli and holdfast proteins),
and motility were annotated using DIAMOND BLASTX searches against a local version of the NCBI COG data-
base (113) (downloaded 1 May 2018) and, in the case of motility, mapped to KEGG biosynthetic pathways
for synthesizing complete motility apparatus (see Table S8 at https://osf.io/tb3n4/). Genes encoding pepti-
dases were annotated using DIAMOND BLASTX searches against a local version of the MEROPS database
(114) (downloaded 1 July 2018). The capacity for gliding motility was assessed using canonical genes from
three model organisms: the focal adhesion protein in Myxococcus xanthus (AglZ) (115), the SprB and RemA
adhesins in Flavobacterium johnsoniae (116, 117), and Gli349 and Gli521 in Mycoplasma mobile (118, 119).
Additional adhesion gene families were annotated using compilations of well-characterized proteins, includ-
ing unipolar polysaccharide synthesis proteins (upp) (120) and tight adherence proteins (tad) (121). All anno-
tations were based on a sequence identity cutoff of$60% across 90% of the full-length gene.

Auxotrophies were determined for each representative genome and phylobin based on genome-
enabled metabolic models (GEMs) in KBase (122), according to Henry et al. (123). Briefly, flux balance
analysis was performed on GEMs under two growth conditions: on a rich medium containing all poten-
tial biomass precursors and on a minimal medium containing only C and essential nutrients. The number
of critical enzyme-catalyzed reactions was calculated for each GEM according to the following criteria: (i)
the reaction was not involved in central C metabolism, (ii) the reaction was essential and carried flux
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only under minimal (i.e., not under rich) medium conditions, and (iii) the flux of the reaction was coupled
to the production of an essential compound. A genome was considered auxotrophic for a compound if
the number of its critical reactions for its biosynthesis was below a compound-specific threshold or if
the number of gap-filled critical reactions exceeded a compound-specific threshold. Thresholds were set
based on auxotrophy profiles from a dozen well-characterized bacteria in the Bacteroidetes, Firmicutes,
Alphaproteobacteria, and Gammaproteobacteria.

Statistical analyses. Statistics were performed in R v.3.4.2 (124) with the following packages:
reshape2, ggplot2, plyr (125–127), Hmisc (128), and phyloseq (129). Nonparametric multidimensional
scaling (NMDS) was performed using metaMDS from the R package vegan (130). The relative amount of
variation in the primary and secondary NMDS axes explained by functional traits was calculated using
the R package relaimpo (131). Pairwise multiple comparisons based on the Kruskal-Wallis test (krus-
kalmc) were performed using the R package pgirmess (132). Minimum generation times were predicted
for all phylobins and representative genomes using growthpred (v.1.07) (133) based on codon usage
bias using ribosomal genes (identified by COG ID) as the set of highly expressed genes. All analyses can
be reproduced using R scripts, and data are available in the supplementary data package at https://osf
.io/tb3n4/.

Data availability. All analyses can be reproduced using R scripts, and data are available in the sup-
plementary data package at https://osf.io/tb3n4/. Supplementary data, figures, tables, and methods are
hosted at the Open Science Framework at https://osf.io/tb3n4/. The shotgun metagenomes (BioProject
no. PRJEB23737), 16S rRNA (no. PRJNA317227), and ITS (no. PRJNA589050) amplicon libraries associated
with this study are available through the NCBI.
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