1 local adaptation and host specificity to copepod intermediate hosts by the

2 Schistocephalus solidus tapeworm

3

Authors: Kum C. Shim¹, Christopher Peterson¹, Daniel I. Bolnick^{2*}
¹Department of Integrative Biology, University of Texas at Austin, TX.
²Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
*Corresponding author: daniel.bolnick@uconn.edu

11 Abstract:

12 We investigated if there was local adaptation and host specify in the tapeworm

13 *Schistocephalus solidus* to its copepod first intermediate hosts. The tapeworm is locally adapted

14 and host specific to its threespine stickleback second intermediate host. We exposed copepods

15 from five lakes in Vancouver Island (BC, Canada) to local (i.e. same lake) and foreign

16 tapeworms in a reciprocal exposure experiment. Results indicate that the tapeworm is not locally

17 adapted to the copepods, but there was host specificity as a copepod genus was more parasitized

- 18 than another genus.
- 19
- 20

21 Introduction:

One of the most intriguing features of parasites with complex life cycles is their ability to infect several very disparate hosts during each of their life stages (Schmid-Hempel 2011). Transmission of these parasites (especially helminths) usually involves search for, and penetration of, their intermediate hosts. These parasites then passively infect their final hosts when the intermediate hosts are predated. Thus, complex-life-cycle parasites usually lower the overall fitness of their intermediate hosts (i.e. increased predation), and cannot be as selective on infecting final hosts (Schmid-Hempel 2011, Poulin 2007, Noble et al. 1989). Accordingly, these parasites
should be more host-specific to intermediate than to final hosts (Poulin 2007, Noble et al. 1989).
Increased host specificity and negative fitness effects, imply that host-parasite coevolution and
local adaptation may be more likely between parasites and their intermediate hosts (Lively et al.
2004).

33 Moreover, in host-parasite coevolution, the species with the higher dispersal rates is predicted to locally adapt to the other (Gardon and Nuismer 2009, Greischar and Koskella 2007, 34 35 Morgan et al. 2005). This theoretical result is contrary to our usual expectation that dispersal and 36 gene flow homogenize populations and counter-act divergent selection (Lenormand 2002). But in antagonistically interacting species, gene flow (within moderation) provides genetic diversity that 37 38 aids in adapting to the opposing species (Gardon and Nuismer 2009). Parasite dispersal rates are usually higher than their hosts' (Mazé-Guilmo at al. 2016, Hoeksema and Forde 2008), so parasites 39 should be more locally adapted to their hosts than vice-versa. Moreover, hermaphroditic parasites 40 41 can have higher reproductive success (i.e., it can fertilize other individual's eggs and at the same 42 time receive sperm to fertilize its eggs) and higher dispersion rates, both of which can lead to increased local adaptation (Mazé-Guilmo et al. 2016, Hoeksema and Forde 2008). 43

Combining all the propositions above (i.e., hosts-specificity, negative fitness effects on
their intermediate hosts, and higher dispersal rates), parasites with complex life cycles, especially
those that are hermaphroditic, should be often locally adapted to their intermediate hosts.

We tested the above prediction using the hermaphroditic tapeworm *Schistosoma solidus*(Eucestoda: Pseudophyllidea) and its first intermediate hosts, freshwater cyclopoid copepods. This
tapeworm is found mainly in Holarctic lakes. It has copepods and threespine sticklebacks
(*Gasterosteus aculeatus*) as first and second intermediate hosts (Barber and Scharsack 2009,

51 Dubinina 1980) and the final hosts are warm-blooded vertebrates, usually fish-eating birds. The 52 tapeworm reproduces sexually in the finals hosts' intestines and its eggs are dispersed with these 53 hosts' feces, so the tapeworm has higher dispersal rates than its first two intermediate hosts which 54 rarely disperse between even adjacent lakes (Caldera and Bolnick 2008). The tapeworm can be 55 bred in-vitro, making it an excellent laboratory system for host-parasite studies (Barber 2013, 56 Barber and Scharsack 2009, Smyth 1990). The tapeworm is not host specific to its final hosts, infecting several species of birds and even fish-eating mammals like otters (Hoberg et al. 1997, 57 Dubinina 1980). However, the tapeworm is very host-specific to the stickleback (Barber 2013, 58 59 Dubinina 1980). The tapeworm affects negatively the fitness of the fish (Weber et al. 2017b and references therein), and is locally adapted to this host (Hafer 1017, Kalbe et al. 2016). In laboratory 60 61 infections, this tapeworm had negative fitness consequences to lab-reared Macrocyclops albidus copepods (Benesh 2010, Wedekind 1997); however, no work has been done on wild copepod 62 63 species that are sympatric with the tapeworm to establish host-specificity and local adaptation, as 64 has been done with stickleback.

We anticipate that this tapeworm would be similarly host specific and locally adapted to 65 their copepod hosts as in their stickleback host. To test this hypothesis, we used reciprocal infection 66 67 trials using factorial combinations of S. solidus tapeworms and native copepod species collected from lakes on Vancouver Island. We measured local adaptation through mainly infection rates in 68 69 copepods by local (same lake) and foreign (different lake) tapeworms and by intensity (number of 70 parasites inside hosts) in the infected copepods. To measure host specificity, we infected different 71 copepod genera with the tapeworm and measured infection success in each genus. Results indicate 72 that there was no local adaptation by the tapeworm in the copepods, but there was host specificity

as a specific crustacean genus had overall higher infection rates than another used in thisexperiment.

75

76 Material and methods:

77 Copepod colonies:

78 We used copepods from established laboratory colonies from five lakes on Vancouver Island (Boot, Echo, Gosling, Lawier, and Roberts Lakes. The coordinates for these lakes are in 79 supplementary Table 1). These colonies were established from plankton tows collected on 80 81 September 15, 2017, and June 24, 2018. Colonies were kept in five gallon buckets at 20°C and 82 under 16:8 hrs light:dark to simulate summer conditions in Vancouver Island until the start of the experiment on October 20 2018. We fed copepods in each bucket weekly with ~500mL of 83 Paramecium caudatum and mixed rotifer cultures plus a ground protozoan pellet, both from 84 Carolina Biological Supply Company (Burlington, NC). We also added 10-20 autoclaved wheat 85 86 seeds once a month to each bucket for bacterial growth, which contributed to the copepod and paramecium diets. Before the start of the experiment, we identified each lake's copepods to species 87 88 level under a dissecting scope and using the Image-Based Key to the Zooplankton of North America (Haney 2013). 89

90 The laboratory colonies for each lake only had one surviving copepod species just before
91 the start of the experiment. These were *Macrocyclops albidus* for Boot and Lawier Lakes,
92 *Macrocyclops fuscus* for Roberts Lake, *Acanthocyclops robustus* for Echo Lake, and
93 *Acanthocyclops brevispinosus* for Gosling Lake. All these copepods were from the order
94 Cyclopoida.

96 Tapeworm colonies:

We used tapeworm eggs from three lakes in Vancouver Island (Boot, Echo, and Gosling 97 Lakes). Lawier and Roberts Lakes lack infected stickleback fish, so tapeworms were unavailable 98 99 from these two lakes; thus, we infected copepods from five lakes with tapeworms from three. The 100 advantage of this design is that copepods from Lawier and Roberts lakes could be highly 101 susceptible to the tapeworm due to their lesser exposure to the parasites; thus, serving as positive 102 controls. The tapeworm eggs were collected from laboratory crosses of randomly chosen wild 103 tapeworms obtained from infected fish, following established methods (Weber et al. 2017b, Smyth 104 1990). We hoped that these randomly chosen tapeworms would reflect the tapeworm genetic 105 diversity in each lake. These crosses were done in June – Sept. 2018, and the eggs were kept at 106 4°C until the experiment.

107

108 Experimental set-up:

109 To test for tapeworm local adaptation and host specificity to copepods, we carried out a 110 reciprocal infection experiment by exposing the copepods from each lake to local and foreign 111 tapeworm larvae (coracidia) from three lakes (i.e., Boot, Echo, and Gosling lakes). We hatched 112 tapeworm eggs and exposed the coracidia to copepods following published methods (Weber et al. 113 2017b, Smyth 1990). We used six-well plates, each well holding a different combination of 114 copepods (n=10 individuals per well) from a lake and tapeworms (n=20 coracidia per well) from 115 the same or a different lake (Figure 1). We used a combination of 1:2 copepod to tapeworm ratio 116 to account for the short lifespan (~24hr) of the parasite (Dubinina 1980). We used three tapeworm 117 families or strains per lake. We also had six to eight wells per lake with copepods unexposed to 118 tapeworms as negative controls to measure tapeworm exposure and infection effects on host

mortality (supplementary table 2). The plates were kept in the same conditions as the copepod colonies (i.e. 20°C and 16:8hrs light:dark). We randomized the positions of the copepod-tapeworm combinations within plates, and plate locations within the incubator. We dissected each surviving copepod to ascertain infection status 17-22 days post exposure when tapeworms reached maximum size inside copepods (Dubinina 1980).

In total, we used 49 6-well plates, exposing 2,890 copepods (10 per well) with 5,780 tapeworms (20 per well, nine families in total, three per lake. See supplementary table 2). At the end of experiment, 1622 exposed and 330 control copepods survived. Exposure to tapeworms did not affect copepod survival (P value = 0.996, supplementary figure 2). The survival rate for copepods in the experiment was 56%.

129

130 Bayesian analysis (data analysis):

We used mixed-effect hurdle models to simultaneously estimate the effect of copepod and 131 parasite origin on infection rate (prevalence) and intensity (number of worms per successfully 132 133 infected copepod). Conceptually, these models combine a logistic regression on parasite 134 presence/absence with a truncated Poisson regression on non-zero parasite counts. Our models 135 considered tapeworm lake and its interaction with either copepod genus or lake as fixed effects; 136 we also included an indicator for whether the tapeworm and copepod were from the same lake (i.e. 137 "native"). Plate number and tapeworm lake were included as random effects. The full model 138 contains all of these terms as predictors for both prevalence and incidence. We created a series of 139 reduced models from a list of all possible combinations of predictors, excluding models that 140 contained interactions without their main effects, copepod lake without genus, and tapeworm 141 family without lake.

We fit all models with the *brms* package in R v. 4.0.4 (Bürkner 2018, R Core Team 2018). The predictive value of each model was determined with Bayesian stacking weights calculated by the *loo* package (Yao et al. 2018); conceptually, this is similar to AIC model weighting. A combined ensemble was created by pooling a weighted sample of each model's posterior distribution. We defined effect sizes as the standard deviation of a term's marginal effects at each posterior sample from a model where the term was included. Prior specification and other details are provided in the supplementary material section.

149

150 **Results**:

In this paper we tested if the tapeworm *S. solidus* is locally adapted and host specific to their copepod hosts. My results indicate that the tapeworm is not locally adapted to the copepods (figure 2), but it might be more host specific to a genus of copepods as rates of infection and intensity (number of parasites inside infected hosts) were higher in *Acanthocyclops* than *Macrocyclops* copepods (figures 3 to 5).

156

157 Results from the Bayesian analysis:

The ensemble mixed-effect hurdle model contained 1.37 million posterior samples, with 4,450 different models contributing at least one sample. No single model had a stacking weight higher than 0.3%; however, both copepod and tapeworm origins contributed to over 80% of both the intensity and infection rate model components (Table 1). For both model components, copepods had the largest effect size of any term (intensity: 0.640 [0.421, 1.289]; infection rate: 0.255 [0.213, 0.364]; brackets signify 95% credible interval). Copepod effects can be decomposed into genus and lake of origin, with lake nested in genus; 61% of posterior samples with copepod

genus terms also contained copepod lake. Copepod genus effect sizes were generally smaller when
lake effects were also present (intensity effect sizes: 0.712 [0.518, 0.958] without lake, 0.342
[0.011, 2.714] with lake; infection rate: 0.338 [0.303, 0.375] without lake, 0.210 [0.031, 0.395]
with lake; supplementary figure 1).

Copepod by tapeworm interactions (the typical test for local adaptation) had the lowest ensemble inclusion frequencies for both the intensity and infection rate model components (Table 1), and their effect sizes when present had wide, noisy posterior distributions. The 'native' effect (indicating copepods and tapeworms from the same lake) had higher inclusion but consistently small effect sizes; we interpreted this as insufficient evidence for local adaptation. All of these effects had lower inclusion rates than the 6-well plates used for in the experiment.

We also ran mix-effect linear and GLM models in R (R Core Team) to supplement the analyses and results above. For these analyses, the best predictors for infection rate were the copepod and tapeworm lakes, and the best predictors for intensity in infected copepods was copepod lake. These results did not differ considerably from the best Bayesian mixed-effect hurdle models above, suggesting our results are robust to either choice of analytical method. For more details on the mix-effect and GLM models and results, see supplementary material.

As mentioned in the Bayesian results section, there was not enough evidence for local adaptation of the tapeworm to their copepod hosts. This can also be seen in figure 2, where infection rates by the tapeworm on local (from the same lake) and foreign (from different lakes) copepods were very similar. However, there was evidence of host specificity as copepod genus was a strong predictor in infection rate and infection intensity in the crustacean. For example, copepods from Echo and Gosling lakes (both of the genus *Acanthocyclops*) were three to six times more susceptible to infection than the other copepod genus (*Marcocyclops*) from the three remaining lakes (figure 3). This was true for all tapeworm strains used (figure 4). Moreover, the infected copepods from Echo and Gosling lakes (again both of the genus *Acanthocyclops*) also had between 0.3 to 0.5 times more tapeworms than those (of the genus *Marcocyclops*) from the other three lakes (figure 5). This accounts for the relatively high effect sizes of the copepod genus factor in the Bayesian analysis.

193

194 **Discussion**:

We tested for local adaptation and host specificity of the tapeworm S. solidus from three 195 196 lakes in Vancouver Island to copepods from the same plus two more lakes where the tapeworm is 197 absent (Weber et al. 2017b, personal observations). Researchers argue that parasites with complex life cycles should be more host-specific (Poulin 2007, Nobel et al. 1989), and that parasites with 198 199 higher dispersal rates should locally adapt to their hosts (Barber and Scharsack 2009, Morgan et 200 al. 2009). Thus, the S. solidus tapeworm, being a parasite with a complex life cycle and having 201 higher dispersal rates than their intermediate hosts (Dubinina 1980), should show local adaptation 202 and host specificity to its copepod hosts in a similar fashion to the tapeworm's second intermediate 203 host (i.e. threespine sticklebacks [Hafer 2018, Weber et al. 2017a, Kalbe et al. 2016]).

However, our results indicate that there was no evidence of differences between infection rates by local and foreign tapeworms on the copepods (figure 2). Our experiment also shows that copepods from Echo and Gosling Lakes (genus *Acanthocyclops*) were more susceptible to *S. solidus* tapeworm infection than the ones from the other three lakes (genera *Macrocyclops*) (figure 3), and these copepods also had slightly more tapeworms when infected (figure 5). These infection and intensity rates were very similar among the different tapeworm strains from the three lakes used (figures 4 and 5). Thus, at least for this parasite-host system, we did not observe localadaptation by the tapeworm to the copepods.

Instead, the success of the tapeworm within a given lake depended mostly on whether a copepod genus (*Acanthocyclops*) was present. Variation in zooplankton community structure, between lakes, means that tapeworms will be locally maladapted to lakes with *Macrocyclops* spp copepods. The higher susceptibility of Echo and Gosling Lakes' copepods (of the genus *Acanthocyclops*) to the tapeworm explains why copepod and tapeworm lake variables in our models fit most the data.

218 To emphasize more the lack of local adaptation in our experiments, Boot and Lawier Lakes 219 had the same species of copepods (Macrocyclops albidus), but both lakes' copepods had very 220 similar infections rates by the three strains of tapeworms used (figure 4). Specifically, Boot Lake 221 tapeworms are no more (or less) effective at infecting Boot Lake M. albidus than they are at 222 infected Lawier Lake M. albidus (a home-versus-away criterion for local (mal)adaptation). Nor 223 are the Boot Lake tapeworms any better (or worse) at infecting their native Boot Lake copepods, 224 relative to tapeworms from two other lakes (a native versus immigrant criterion for local 225 (mal)adaptation). Thus, for both lakes, the infection rate by local tapeworms was not significantly 226 different to that of foreign tapeworms.

Local adaptation aside, our experiments show the tapeworm is clearly capable of infecting multiple copepod genera, but it is most efficient at infecting a particular genus. The copepods with the highest infection rates (those from Echo and Gosling lakes) were from the same genus (i.e. *Acanthocyclops*). This was true regardless of whether the tapeworms were taken from a lake dominated by *Acanthocyclops*, or not. Currently, *M. albidus* copepods are used for experimental infections in sticklebacks (Weber et al. 2017a and 2017b, Barber 2013, Benesh 2010, Wedekind 233 1997, Smyth 1990); perhaps, future work should employ Acanthocyclop species instead to 234 maximize resources and time for better results. Weber et al. (Weber et al. 2017a) argued that to 235 understand the patchiness of the tapeworm infections in stickleback populations, more data is 236 needed on ecological processes like parasite encounter rates and abundance of suitable primary 237 hosts (copepods). Although, the primary reason for the different stickleback infection levels in the 238 lakes sampled was due to recent evolution of the fish's immunology (Weber et al. 2017b), copepod 239 infectivity might still play a role. We sampled in the same lakes for this work, so we can comment 240 on the stickleback infection levels to our copepod infection levels. The high copepod infection 241 levels in Gosling and Echo Lakes might contribute to the high stickleback infection levels in these 242 lakes (figs 1 in Weber et al. 2017a and 2017b). And even if wild sticklebacks in Roberts Lake lack 243 tapeworms, our experiments here show that this lake's copepods can get infected, validating the 244 hypothesis that this lake's fish are exposed to tapeworms in the wild but still have zero infections 245 due to recently evolved immunological mechanisms to combat infections (Weber et al. 2017b).

246 247

248

249

Table 1: Inclusion frequencies and effect sizes of each term in the ensemble model for intensity

252 (tapeworm count in infected copepods) and infection rate (prevalence). Effect sizes are provided

as medians with 95% credible intervals and were calculated over the portion of the ensemble

254 posterior where terms were present. Pooled terms indicate the combined effects of all copepod or

tapeworm terms that were present in the model. Random effects are noted with (RE). Effect sizes

for intensity and infection rate should not be compared, as they are in different units (counts and proportions, respectively).

258

Model		Ensemble		
Component ¹	Term ²	Frequency ³	Effect Size ⁴	[95% CI]⁵
Intensity	Copepod (pooled)	0.849	0.640	[0.421, 1.289]
Intensity	Copepod Genus	0.849	0.621	[0.019, 2.201]
Intensity	Worm (pooled)	0.817	0.187	[0.027, 1.297]
Intensity	Worm Lake	0.817	0.182	[0.023, 1.374]
Intensity	Copepod Lake	0.522	0.503	[0.190, 2.464]
Intensity	Plate (RE)	0.500	0.095	[0.004, 0.421]
Intensity	Native	0.473	0.126	[0.005, 0.798]
Intensity	Worm Family (RE)	0.420	0.113	[0.006, 0.575]
Intensity	Genus x Worm Lake Interaction	0.354	0.616	[0.052, 4.309]
Intensity	Copepod x Worm Lake Interaction	0.208	0.721	[0.079, 7.482]
Infection Rate	Copepod (pooled)	0.871	0.255	[0.213, 0.364]
Infection Rate	Copepod Genus	0.871	0.274	[0.043, 0.385]
Infection Rate	Worm (pooled)	0.840	0.058	[0.020, 0.118]
Infection Rate	Worm Lake	0.840	0.060	[0.018, 0.128]
Infection Rate	Copepod Lake	0.593	0.143	[0.072, 0.242]
Infection Rate	Plate (RE)	0.500	0.032	[0.002, 0.078]
Infection Rate	Worm Family (RE)	0.409	0.018	[0.001, 0.060]
Infection Rate	Native	0.372	0.039	[0.002, 0.142]
Infection Rate	Copepod x Worm Lake Interaction	0.235	0.095	[0.045, 0.164]
Infection Rate	Genus x Worm Lake Interaction	0.218	0.053	[0.009, 0.175]

259

¹ For Model Component; Infection Rate is the Prevalence of infection in copepods by the

tapeworm. Intensity is the number of tapeworms inside infected copepods.

²Factor indicates the model term; Copepod (pooled) and Worm (pooled) refer to the combination

263 of whatever copepod/worm related terms were present in each model.

³Frequency the proportion of the model ensemble that the term appears in.

265 ⁴Effect size of each model term accounting for the data.

⁵CI: 95% credible interval of the effect size.

268 Figure 1: Graphical representation of the experiment setup. A) The combinations of the tapeworm Schistocephalus solidus by copepod exposures, using three tapeworm families per 269 270 lake; red squares indicate tapeworms exposed to sympatric copepods. Roberts and Lawier Lakes 271 are shaded in grey representing control lakes where the tapeworm is lacking in threespine 272 sticklebacks. The numbers inside each square represent total numbers of copepods and 273 tapeworms used (the latter in parenthesis). Names of the copepod species used are below each 274 lake's names. B) A diagram of how each tapeworm family was exposed to each lake's copepods 275 (in this example Boot Lake tapeworms to Roberts Lake copepods): in six different wells from 276 different 6-well plates, each with 10 copepods exposed to 20 tapeworm larvae. All well positions 277 for all exposures in panel A were randomized in the 6-well plates, and the position for each 6-278 well plates were also randomized in the experimental room.

280

281

Figure 2. Overall, infection rates on copepods by local or native tapeworms (i.e. where the *S*.

solidus tapeworms are from the same lakes as the copepods) are very similar to that of foreigntapeworms.

289

290

Figure 3: Infection results indicate that copepods from Echo and Gosling Lakes were three to six times more susceptible to infection by the tapeworm than those of the other three lakes. The scientific names of the copepods from each lake are in parenthesis under the lake names. The tapeworm is not found in Lawier and Poherts lakes (at least from stickloback fish surveys)

294 not found in Lawier and Roberts lakes (at least from stickleback fish surveys).

- 295
- 296
- 297

298

Figure 4. The infection rates in copepods were similar among all the tapeworm families or strains from the three lakes used. Again, copepods from Echo and Gosling Lakes were three to six times more susceptible to infection than those of the other three lakes (see figure 2). The scientific names of the copepods from each lake are in parenthesis under the lake names. The tapeworm is not found in Lawier and Roberts lakes (at least from stickleback fish surveys).

304

305

307

308

Figure 5. The infected copepods from Echo and Gosling Lakes also had slightly more parasites on average than the ones from the other three lakes. Again, the averages were very similar in the three tapeworm strains from the three lakes used. The scientific names of the copepods from each lake are in parenthesis under the lake names. The tapeworm is not found in Lawier and Roberts lakes (at least from stickleback fish surveys).

314

315

316

317 **References:**

318

321

- Barber, I. 2013. Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends
 in Parasitology, 29: 556-566.
- Barber, I. and J. P. Scharsack. 2009. The three-spined stickleback- Schistocephalus solidus system:
 an experimental model for investigating host-parasite interactions in fish. Parasitology, 137:
 411-424.
- Benesh, D. P. 2010. What are the evolutionary constraints on larval growth in a trophically
 transmitted parasite? Oecologia, 162: 599-608.
- 328

Bürkner P. C. 2018. Advanced Bayesian Multilevel Modeling with the R Package brms. The R
 Journal. 10(1), 395-411. doi.org/10.32614/RJ-2018-017

221	
332 333 334 225	Caldera, E.J. and Bolnick, D. I. 2008. Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evolutionary Ecology Research, 2008: 575-598.
336 337 338	Dubinina M. N. Tapeworms (Cestoda,Ligulidae) of the fauna of the USSR (Translated from Russian). New Delhi: Amerind Publishing Co. Pvt. Ltd., 1980.
339 340 341	Gandon, S., and Nuismer, S.L. 2009. Interactions between Genetic Drift, Gene Flow, and Selection Mosaics Drive Parasite Local Adaptation. The American Naturalis, 173: 212-224.
342 343 344	Greischar, M.A. and Koskella, B., 2007. A synthesis of experimental work on parasite local adaptation. Ecology letters, 10:418-434.
345 346 347	Hafer, N., 2018. Differences between populations in host manipulation by the tapeworm Schistocephalus solidus–is there local adaptation? <i>Parasitology</i> , <i>145</i> (6), pp.762-769.
348 349 350 251	Haney, J.F. et al. "An-Image-based Key to the Zooplankton of North America" version 5.0 released 2013. University of New Hampshire Center for Freshwater Biology <cfb.unh.edu> 1 Oct 2019.</cfb.unh.edu>
351 352 353 354	Hoberg, E. P., Henny, C. J., Hedstrom, O. R. and Grove, R. A. 1997. Intestinal helminths of river otters (Lutra canadensis) from the Pacific Northwest. Journal of Parasitology, 83: 105-110.
355 355 356 357	Hoeksema, J.D. and Forde, S.E., 2008. A meta-analysis of factors affecting local adaptation between interacting species. The American Naturalist, 171(3), pp.275-290.
358 359 360 361	Kalbe, M., Eizaguirre, C., Scharsack, J.P. and Jakobsen, P.J., 2016. Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance. Parasites & vectors, 9(1), pp.1-12.
362 363 364	Lenormand T. 2002. Gene flow and the limit to natural selection. Trends in Ecology and Evolution, 17: 183-189
366 367	Lively, C.M., M.F. Dybdahl, J. Jokela, E. Osnas, L.F. Delph. 2004. Host sex and local adaptation by parasites in a snail-trematode interaction. American Naturalist, 164:S6-S18.
369 370 371	Mazé-Guilmo, E., Blanchet, S., McCoy, K.D. and Loot, G., 2016. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecology Letters, 19(3), pp.336-347.
372 373 374	Morgan, A.D., Gandon, S., and Buckling, A. 2005. The effect of migration on local adaptation in a coevolving host–parasite system. Nature, 437:253-256.
374 375 376	Noble, E. R., Noble, G. A., Schad, G. A., and MacInnes, A. J. 1989. Parasitology: The Biology of Animal Parasites, 6th ed. Lea & Febiger, Philadelphia

377	
378	Poulin, R., 2007. Evolutionary ecology of parasites. Princeton University Press, New Jersey.
379	
380	R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for
381	Statistical Computing, Vienna, Austria. https://www.R-project.org/.
382	
383	Schmid-Hempel, P., 2011. Evolutionary parasitology. Oxford University Press, Oxford, UK.
384	
385	Smyth, J. D. 1990. In vitro Cultivation of Parasitic Helminths. CRC Press, Boca Raton, FL.
380	Wahar I.N. M. Kalha K.C. Shim N. I. Erin N.C. Stainal I. Ma and D. I. Dalnick 2017a
207 200	Posist globally infact legally: a transcontinental test of adaptation by sticklaback and their
380	taneworm parasite. The American Naturalist, 189: 43-57
390	tapewonin parasite. The American Naturalist, 107. 45-57.
391	Weber, J. N., N. C. Steinel, K. C. Shim, and D. I. Bolnick. 2017b. Recent evolution of extreme
392	cestode growth suppression by a vertebrate host. Proceedings of the National Academy of
393	Sciences, 114: 6575-6581.
394	
395	Wedekind, C. 1997. The infectivity, growth, and virulence of the cestode Schistocephalus solidus
396	in its first intermediate host, the copepod Macrocyclops albidus. Parasitology, 115: 317-324.
397	
398	Yao, Y., A. Vehtari, D. Simpson, and A. Gelman. 2018. Using Stacking to Average Bayesian
399	Predictive Distributions (with Discussion). Bayesian Analysis. 13 (3): 917-1007
400	
401	
402	
403	Supplementary material
404	
405	Supplementary table 1: copepod collection dates and locality:

Lake	Longitude	Latitude	Collection date
Boot Lake	50.05503	-125.526	9/16/17, 6/24/18
Echo Lake	49.98765	-125.411	9/15/17, 6/24/18
Lawier Lake	50.083144	-125.515052	9/15/17, 6/24/18
Roberts Lake	50.216390	-125.544687	9/15/17, 6/24/18
Gosling Lake	50.04592	-125.501	9/16/17, 6/24/18

Supplementary table 2: Tapeworm families used for the experiments and number of exposures (i.e.

wells in a 6-well plate) for each lake's copepods (reminder: each well had 10 copepods exposed to 20 tapeworms):

Tapeworm families ¹	Gosling Lake copepods	Roberts Lake copepods	Lawier Lake copepods	Echo Lake copepods	Boot Lake copepods
Control	6	6	6	8	7
Boot 11Bx1A	6	6	6	5	6
(6/17/18)					
Boot 2Ax2C	6	6	5	4	6
(6/17/18)					
Boot bulk	6	6	5	5	6
(7/3/18)					
Echo bulk	6	6	6	5	6
(6/15/18)					
Echo 3Ax1A	6	6	6	5	6
(6/10/18)					
Echo 27Ax31A	5	6	5	6	6
(6/17/18)					
Gosling 7Ax1A	6	6	6	5	6
(6/10/18)					
Gosling 10Ax12A	6	7	5	5	5
(6/17/18)					
Gosling 2	6	6	6	5	6
(9/22/18)					

416

¹ Tapeworm families used in the experiment; 3 families per lake; dates in the parentheses below
each family indicate the time the tapeworm eggs were harvested in the lab for the experiment.
Control indicates no tapeworms were used to exposed the copepods (i.e. negative control); this is

420 to evaluate the survivorship of the copepods in the wells during the experiment.

421

425 Supplementary figure 1: Distribution of effect sizes for Copepod Genus and Copepod Lake for the 426 infection intensity (A) and rate (B) model components. Both panels include the marginal effects 427 of copepod lake (left), the marginal effects of copepod genus conditioned on whether lake was 428 included in the model (bottom), and their bivariate distributions (upper right). For both terms, the 429 genus effect increases when the lake effect declines or is absent; this is particularly notable for the 430 intensity component.

435

Supplementary figure 2: The number of copepods alive after termination of experiment did not
differ significantly between those exposed to the tapeworm and those that were not (i.e., control)
[P value = 0.996, see more details of analysis in Supplementary mix-effect linear and GLM model
analyses below]

440

441

442 Priors and iterations used in the mixed-effect hurdle analysis:

- Each model was run for 4 chains with 1000 warmup and 1000 sampling iterations each. We
 checked model convergence by verifying N_eff > 1000, R-hat > 1.01, and all Hamiltonian MonteCarlo diagnostics were acceptable.
- 446 Our prior distributions were Normal(mean = 0, sd = 6) priors for the intercepts of both model 447 components. For incidence, we used Normal(0,1) priors for fixed effect coefficients and half-t(df 448 = 7, mean = 0, scale = 1) priors for the standard deviation of the random effects. For the prevalence 449 model, our priors were Normal(0, 1.5) for fixed effects and half-t(7, 0, 1.5) for the random effects. 450 These priors were selected because they were flexible enough to allow for large effects but 451 conservative enough to avoid spurious results.
- 452

453 Note: The complete R script for the mixed-effect hurdle analyses is in Christopher Peterson's
454 GitHub (https://github.com/Christopher-Peterson/copepod_worm_adapt).

455

461

456

457 Supplementary mix-effect linear and GLM model analyses:458

- I) Analyzing if there was any difference on survival rate between copepods exposed to tapewormsand the not-exposed ones (i.e. control):
- 462 > model15 = glm(cop.alive ~ is_control, data = control_df)
- 463 > anova(model15, test = "LRT")

464 Analysis of Deviance Table 465 Model: Poisson, link: log 466 467 468 Response: cop.alive 469 470 Terms added sequentially (first to last) 471 472 473 Df Deviance Resid. Df Resid. Dev Pr(>Chi) 474 NULL 291 2409.6 0.0001767 290 2409.6 0.9963 475 is control 1 476 477 Summary: not significant difference on number of copepods alive after experiment from 478 control vs. exposed copepods (i.e. exposed to tapeworms) 479 480 481 > model14 = glm(cop.death.numb ~ is control, data = control df, family = poisson()) > anova(model14, test = "LRT") 482 Analysis of Deviance Table 483 484 485 Model: poisson, link: log 486 487 Response: cop.death.numb 488 489 Terms added sequentially (first to last) 490 491 492 Df Deviance Resid. Df Resid. Dev Pr(>Chi) 493 NULL 291 684.6 290 494 is control 1 0.00056907 684.6 **0.981** 495 496 Summary: not significant difference on number of copepod deaths during experiment from 497 control vs. exposed copepods (i.e. exposed to tapeworms) 498 499 500 501 **II). GLM and GLMM analyses companion to the Bayesian analysis:** 502 Using lme4 version 1.1-13 package for R 503 504 > summary(model1) Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 505 506 glmerMod] Family: binomial (logit) 507 Model 1 : infected.yes.no ~ cop.lake * worm.lake + (1 | plate) 508 Data: copepods 509

510 511 AIC BIC logLik deviance df.resid 1754.9 1841.1 -861.4 1722.9 512 1606 513 514 Scaled residuals: 515 Median Min 10 3Q Max 516 -1.6429 -0.4962 -0.3703 0.7090 3.7777 517 518 Random effects: 519 Groups Name Variance Std.Dev. 520 plate (Intercept) 0.02598 0.1612 521 Number of obs: 1622, groups: plate, 51 522 523 Fixed effects: 524 Estimate Std. Error z value Pr(>|z|)525 (Intercept) 0.2789 -6.308 2.83e-10 *** -1.7593 526 cop.lakeech 2.4600 0.3361 7.318 2.51e-13 *** 527 cop.lakegos 2.6596 0.3460 7.686 1.52e-14 *** 528 cop.lakelau -0.1886 0.3737 -0.505 0.61378 529 cop.lakerob 1.0933 0.4011 2.726 0.00642 ** 530 worm.lakeech 0.3491 0.3839 0.909 0.36318 0.3241 531 worm.lakegos 0.4025 0.805 0.42065 532 cop.lakeech:worm.lakeech -0.3245 0.4721 -0.687 0.49182 533 cop.lakegos:worm.lakeech -0.6611 0.4740 -1.395 0.16310 cop.lakelau:worm.lakeech -0.3105 534 0.5246 -0.592 0.55388 535 cop.lakerob:worm.lakeech -0.3525 0.5873 -0.600 0.54837 cop.lakeech:worm.lakegos -0.7522 0.4870 -1.545 0.12246 536 537 cop.lakegos:worm.lakegos -1.0517 0.4811 -2.186 0.02881 * 538 cop.lakelau:worm.lakegos -0.9553 0.5728 -1.668 0.09537. 539 cop.lakerob:worm.lakegos -1.1049 0.6368 -1.735 0.08271. 540 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 541 542 Correlation matrix not shown by default, as p = 15 > 12. 543 Use print(x, correlation=TRUE) or 544 545 vcov(x)if you need it 546 547 convergence code: 0 548 Model failed to converge with max|grad| = 0.00320527 (tol = 0.001, component 1) 549 550 > anova(model1,test="LRT") 551 Analysis of Variance Table Df Sum Sq 552 Mean Sq F value 553 4 326.57 81.643 81.6425 cop.lake 554 worm.lake 2 12.22 6.110 6.1102 cop.lake:worm.lake 8 555 6.20 0.775 0.7746

```
556
557
558
      2) Doing another model without the interaction of copepod lakes and worm lakes:
559
560
      > model2 <- glmer(infected.yes.no \sim cop.lake + worm.lake + (1|plate),
                  data=copepods, family="binomial") #model 2 does not have an interaction
561
      +
562
563
      > #comparing models 1 and 2:
      > anova(model1, model2)
564
565
      Data: copepods
566
      Models:
567
      model2: infected.yes.no \sim cop.lake + worm.lake + (1 | plate)
      model1: infected.yes.no \sim cop.lake * worm.lake + (1 | plate)
568
569
570
                                                             Chisq Chi Df Pr(>Chisq)
               Df AIC
                              BIC
                                     logLik
                                               deviance
571
      model2 8 1744.9 1788.0
                                    -864.46 1728.9
572
      model1 16 1754.9 1841.1
                                    -861.43 1722.9
                                                              6.0436
                                                                        8
                                                                            0.6423
573
574
      model2 without the interaction is slightly better! Though not significantly
575
      3) model 6, testing for GLM without taking into account the random variable (no random
576
577
      effect)
578
      > model6 <- glm(infected.yes.no \sim cop.lake + worm.lake + cop.lake*worm.lake, + data =
579
      copepods, family="binomial")
      > summary(model6)
580
581
582
      Call:
      glm(formula = infected.ves.no ~ cop.lake + worm.lake + cop.lake *
583
584
         worm.lake, family = "binomial", data = copepods)
585
      Deviance Residuals:
586
587
         Min
                      Median
                 1Q
                                  3Q
                                        Max
      -1.5645 -0.6639 -0.5187 0.8962 2.2917
588
589
590
      Coefficients:
591
                         Estimate Std. Error z value Pr(>|z|)
592
                                   0.2713 -6.366 1.94e-10 ***
      (Intercept)
                         -1.7272
593
      cop.lakeech
                           2.4319
                                    0.3292 7.388 1.49e-13 ***
594
      cop.lakegos
                           2.6027
                                    0.3302 7.882 3.21e-15 ***
                                    0.3704 -0.569 0.56938
595
      cop.lakelau
                          -0.2107
      cop.lakerob
                           1.0912
                                    0.3982 2.740 0.00614 **
596
      worm.lakeech
597
                            0.3271
                                     0.3780 0.865 0.38677
                            0.2921
598
      worm.lakegos
                                     0.3952 0.739 0.45973
599
      cop.lakeech:worm.lakeech -0.3263
                                          0.4636 -0.704 0.48161
600
      cop.lakegos:worm.lakeech -0.6018
                                          0.4568 -1.318 0.18765
      cop.lakelau:worm.lakeech -0.2863
601
                                          0.5199 -0.551 0.58185
```

602 cop.lakerob:worm.lakeech -0.3843 0.5788 -0.664 0.50670 603 cop.lakeech:worm.lakegos -0.7143 0.4761 -1.500 0.13356 604 cop.lakegos:worm.lakegos -1.0181 0.4707 -2.163 0.03056 * 605 cop.lakelau:worm.lakegos -0.9051 0.5637 -1.606 0.10834 cop.lakerob:worm.lakegos -1.0732 606 0.6296 -1.705 0.08828. 607 608 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 609 610 (Dispersion parameter for binomial family taken to be 1) 611 612 Null deviance: 2167.1 on 1621 degrees of freedom Residual deviance: 1723.3 on 1607 degrees of freedom 613 AIC: 1753.3 614 615 616 Number of Fisher Scoring iterations: 5 617 618 > anova(model6,test="LRT") #"LRT" is to get P-values here to check quickly for significance for 619 the variables in the model 620 Analysis of Deviance Table 621 622 Model: binomial, link: logit 623 624 Response: infected.yes.no 625 626 Terms added sequentially (first to last) 627 628 629 Df Deviance Resid. Df Resid. Dev Pr(>Chi) 630 NULL 1621 2167.1 1742.4 631 cop.lake 4 424.73 1617 < 2.2e-16 *** 1729.0 0.001265 ** 632 worm.lake 2 13.35 1615 633 cop.lake:worm.lake 8 5.71 1607 1723.3 0.6 79743 634 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 635 636 637 Note: From the results above, there're very significant effects of copepod lake and worm 638 lake, but no interaction between them. 639 640 4) testing for effect of plates: (summary answer after running the model below: plate does 641 not matter) 642 > model7 <- glm(infected.yes.no \sim cop.lake + worm.lake + cop.lake*worm.lake + plate, 643 + data=copepods,family="binomial") > anova(model6, model7) #does not give AIC comparisons, so this kind of useless 644 645 Analysis of Deviance Table 646 647 Model 1: infected.yes.no \sim cop.lake + worm.lake + cop.lake * worm.lake

```
648
      Model 2: infected.yes.no \sim cop.lake + worm.lake + cop.lake * worm.lake +
649
        plate
650
       Resid. Df
                    Resid. Dev
                                 Df Deviance
651
      1
              1607
                     1723.3
      2
                     1658.6 50
652
              1557
                                 64.754
653
654
      > summary(model7)
655
656
      Call:
657
      glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake *
        worm.lake + plate, family = "binomial", data = copepods)
658
659
      Deviance Residuals:
660
661
        Min
                1Q
                        Median
                                   3Q
                                         Max
      -2.1391 -0.7205 -0.4181
662
                                0.8657 2.7258
663
664
      Coefficients:
665
                         Estimate Std. Error z value Pr(>|z|)
666
      (Intercept)
                       -3.400215 1.128677 -3.013 0.00259 **
                         2.648247 0.376858 7.027 2.11e-12 ***
667
      cop.lakeech
                         3.271272 0.396900 8.242 < 2e-16 ***
      cop.lakegos
668
      cop.lakelau
                         0.004914 0.393591 0.012 0.99004
669
      cop.lakerob
670
                         1.103968 0.423390 2.607 0.00912 **
                           0.547379 0.427087 1.282 0.19996
671
      worm.lakeech
672
      worm.lakegos
                           0.650357 0.444572 1.463 0.14350
673
      platep1
                        1.423063 1.203531 1.182 0.23704
      platep10
                        1.183440 1.187952 0.996 0.31915
674
      platep11
                       -0.330903 1.234766 -0.268 0.78871
675
      platep12
                        1.690147 1.195298 1.414 0.15736
676
677
      platep13
                        1.281547 1.180913 1.085 0.27783
678
      platep14
                        2.257173 1.174100 1.922 0.05455.
679
      platep15
                        1.166814 1.219485 0.957 0.33866
680
      platep16
                        0.387203 1.170179 0.331 0.74073
                        1.225190 1.179514 1.039 0.29893
681
      platep17
682
      platep18
                        2.003874 1.230927 1.628 0.10354
                        0.919460 1.176703 0.781 0.43457
683
      platep19
                        1.260738 1.188751 1.061 0.28889
684
      platep2
      platep20
                        0.943129 1.180947 0.799 0.42451
685
686
      platep21
                        2.117863 1.184146 1.789 0.07369.
687
      platep22
                        0.870342 1.179558 0.738 0.46060
      platep23
                        2.369486 1.170017 2.025 0.04285 *
688
689
      platep24
                        1.636683 1.212048 1.350 0.17691
690
      platep25
                        1.688014 1.198811 1.408 0.15911
691
      platep26
                        1.536905 1.196642 1.284 0.19902
692
      platep27
                        1.158677 1.194184 0.970 0.33191
693
      platep28
                        1.765654 1.176215 1.501 0.13332
```

694	platep29	1.696665 1.231557 1.378 0.16831
695	platep3	1.741903 1.187559 1.467 0.14243
696	platep30	0.459434 1.208949 0.380 0.70393
697	platep31	0.996894 1.182753 0.843 0.39931
698	platep32	1.586515 1.188720 1.335 0.18199
699	platep33	1.394902 1.237889 1.127 0.25981
700	platep34	1.438833 1.154879 1.246 0.21281
701	platep35	0.365781 1.220012 0.300 0.76432
702	platep36	1.320014 1.189100 1.110 0.26696
703	platep37	1.164217 1.172606 0.993 0.32079
704	platep38	1.558819 1.183279 1.317 0.18771
705	platep39	1.482254 1.204915 1.230 0.21863
706	platep4	2.309692 1.206378 1.915 0.05555.
707	platep40	1.950804 1.181498 1.651 0.09871 .
708	platep41	1.305689 1.223933 1.067 0.28606
709	platep42	Estimate Std. Error z value $Pr(> z)$
710	(Intercept)	-3.3798150 1.1267879 -3.000 0.00270 **
711	cop.lakeech	2.6629963 0.3773947 7.056 1.71e-12 ***
712	cop.lakegos	3.2849437 0.3973952 8.266 < 2e-16 ***
713	cop.lakelau	-0.0526042 0.3916659 -0.134 0.89316
714	cop.lakerob	1.1102455 0.4235788 2.621 0.00876 **
715	worm.lakeech	0.5649020 0.4274367 1.322 0.18630
716	worm.lakegos	0.6713093 0.4449921 1.509 0.13140
717	platep1	$1.4001004 \ 1.2023205 \ 1.164 \ 0.24422$
718	platep10	$1.1421783 \ 1.1859406 \ 0.963 \ 0.33550$
719	platep11	-0.3649309 1.2333211 -0.296 0.76731
720	platep12	1.6596767 1.1936453 1.390 0.16440
721	platep13	$1.2550194 \ 1.1795068 \ 1.064 \ 0.28732$
722	platep14	2.2249946 1.1725085 1.898 0.05774.
723	platep15	$1.1187589 \ 1.2173953 \ 0.919 \ 0.35811$
724	platep16	0.3611196 1.1689989 0.309 0.75739
725	platep17	$1.1901914 \ 1.1777752 \ 1.011 \ 0.31224$
726	platep18	$1.9470174 \ 1.2285226 \ 1.585 \ 0.11300$
727	platep19	$0.9021327 \ 1.1759706 \ 0.767 \ 0.44300$
728	platep2	$1.2408435 \ 1.1877500 \ 1.045 \ 0.29616$
729	platep20	$0.9219882 \ 1.1799472 \ 0.781 \ 0.43458$
730	platep21	2.1044216 1.1832326 1.779 0.07532.
731	platep22	$0.8400550 \ 1.1781515 \ 0.713 \ 0.47583$
732	platep23	2.3557240 1.1686849 2.016 0.04383 *
733	platep24	1.5905510 1.2096493 1.315 0.18855
734	platep25	1.6344116 1.1964111 1.366 0.17191
735	platep26	1.4913152 1.1944169 1.249 0.21182
736	platep27	$1.1385838 \ 1.1933126 \ 0.954 \ 0.34001$
737	platep28	$1.7516352 \ 1.1750112 \ 1.491 \ 0.13603$
738	platep29	$1.6434851 \ 1.2292294 \ 1.337 \ 0.18122$
739	platep3	$1.6953214 \ 1.1854924 \ 1.430 \ 0.15270$

740	platep30	0.4280207 1.2074214 0.354 0.72297
741	platep31	0.9763900 1.1818188 0.826 0.40870
742	platep32	1.5603954 1.1872418 1.314 0.18874
743	platep33	1.3499887 1.2353393 1.093 0.27448
744	platep34	1.4182930 1.1539588 1.229 0.21905
745	platep35	0.3351304 1.2185258 0.275 0.78329
746	platep36	1.2740963 1.1869288 1.073 0.28307
747	platep37	1.1311015 1.1709521 0.966 0.33406
748	platep38	1.5187579 1.1813184 1.286 0.19857
749	platep39	1.4487093 1.2032578 1.204 0.22859
750	platep4	2.2814105 1.2049449 1.893 0.05831.
751	platep40	1.9408945 1.1805980 1.644 0.10018
752	platep41	1.2763272 1.2225738 1.044 0.29650
753	platep42	1.3990490 1.1997577 1.166 0.24357
754	platep43	0.7191183 1.1960971 0.601 0.54769
755	platep44	1.1219854 1.1798769 0.951 0.34164
756	platep45	1.2439503 1.1811677 1.053 0.29227
757	platep46	1.0435061 1.1943221 0.874 0.38227
758	platep47	0.8521671 1.2247366 0.696 0.48656
759	platep48	1.0256932 1.2030773 0.853 0.39390
760	platep49	1.5725579 1.1901917 1.321 0.18641
761	platep5	2.1948244 1.1726097 1.872 0.06124.
762	platep50	2.1848215 1.1983475 1.823 0.06827.
763	platep6	1.1904317 1.1870980 1.003 0.31595
764	platep7	1.8411879 1.2012220 1.533 0.12533
765	platep8	1.1430506 1.2024364 0.951 0.34180
766	platep9	1.3928382 1.2060656 1.155 0.24815
767	cop.lakeech:worm	lakeech -0.1959257 0.5569642 -0.352 0.72501
768	cop.lakegos:worm	.lakeech -1.4267929 0.5652912 -2.524 0.01160 *
769	cop.lakelau:worm.	lakeech -0.4480476 0.5534265 -0.810 0.41818
770	cop.lakerob:worm	lakeech 0.0002931 0.6431409 0.000 0.99964
771	cop.lakeech:worm	.lakegos -1.1915784 0.5580610 -2.135 0.03274 *
772	cop.lakegos:worm	.lakegos -1.5504693 0.5540004 -2.799 0.00513 **
773	cop.lakelau:worm.	lakegos -1.3602538 0.6179272 -2.201 0.02771 *
774	cop.lakerob:worm	lakegos -1.4027838 0.6821333 -2.056 0.03974 *
775		
776	Signif. codes: 0 '*	***' 0.001 ***' 0.01 **' 0.05 ' 0.1
777		
778	(Dispersion param	eter for binomial family taken to be 1)
779		
780	Null deviance:	2167.1 on 1621 degrees of freedom
781	Residual deviance	: 1658.6 on 1557 degrees of freedom
782	AIC: 1788.6	
783		
784	Number of Fisher	Scoring iterations: 5
785		

786 > anova(model7, test = "LRT") 787 Analysis of Deviance Table 788 789 Model: binomial, link: logit 790 791 Response: infected.yes.no 792 793 Terms added sequentially (first to last) 794 795 Df Deviance Resid. Df 796 Resid. Dev Pr(>Chi) 797 NULL 1621 2167.1 798 4 424.73 1617 1742.4 cop.lake < 2.2e-16 *** 799 2 13.35 1729.0 worm.lake 1615 0.00 1265 ** 800 plate 50 54.14 1565 1674.9 0.319232 801 cop.lake:worm.lake 8 0.038042 * 16.52 1557 1658.6 802 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 803 804 805 Note: no significance in the plates, so plate does not have an effect in the infection outcome. But weird that there's a slight significant interaction on copepod and worm lake interactions 806 807 808 809 5) testing for local adaptation > model8 <- glm(infected.yes.no ~ cop.lake + worm.lake + native, + data=copepods, 810 811 family="binomial") 812 > summary(model8) 813 814 Call: 815 $glm(formula = infected.yes.no \sim cop.lake + worm.lake + native,$ family = "binomial", data = copepods) 816 817 818 **Deviance Residuals:** 819 Min 1Q Median 3Q Max 820 -1.5174 -0.6755 -0.5094 0.8875 2.2339 821 822 Coefficients: 823 Estimate Std. Error z value Pr(>|z|)824 (Intercept) -1.34434 0.18042 -7.451 9.24e-14 *** cop.lakeech 2.11536 0.19279 10.972 < 2e-16 *** 825 826 cop.lakegos 2.08992 0.18921 11.045 < 2e-16 *** 827 cop.lakelau -0.61487 0.22859 -2.690 0.00715 ** cop.lakerob 0.61262 0.25303 2.421 0.01547 * 828 worm.lakeech -0.01723 0.14308 -0.120 0.90415 829 830 worm.lakegos -0.44988 0.14882 -3.023 0.00250 ** 831 nativeTRUE -0.15688 0.14466 -1.084 0.27817

833						
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
834						
835	(Dispersion parameter for binomial family taken to be 1)					
836						
837	Null deviance: 2167.1 on 1621 degrees of freedom					
838	Residual deviance: 1727.8 on 1614 degrees of freedom					
839	AIC: 1743.8					
840						
841	Number of Fisher Scoring iterations: 4					
842	8					
843	Df Deviance Resid. Df Resid. Dev Pr(>Chi)					
844	NULL 1621 2167.1					
845	con lake $4 \ 424.73 \ 1617 \ 1742.4 \ < 2.2e-16 ***$					
846	worm lake $2 13 35 1615 1729 0 0001073 $ **					
847	native 1 1.18 1614 1727.8 0.278190					
848						
849	Signif codes: 0 '***' 0 001 '**' 0 01 '*' 0 05 ' ' 0 1 ' ' 1					
850						
851	Summary: no local adaptation					
852						
853						
853 854	6) testing for effect of worm family used: (summary answer after running the model below:					
853 854 855	6) testing for effect of worm family used: (summary answer after running the model below: taneworm family does not matter)					
853 854 855 856	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected yes no ~ cop lake + worm lake + cop lake*worm lake + worm fam.					
853 854 855 856 857	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods.family="binomial")					
853 854 855 856 857 858	 6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) 					
853 854 855 856 857 858 859	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9)					
853 854 855 856 857 858 858 859 860	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call:					
853 854 855 856 857 858 859 860 861	 6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected yes no ~ cop lake + worm lake + cop lake * 					
853 854 855 856 857 858 859 860 861 862	 6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm lake + worm fam family = "binomial" data = copepods) 					
853 854 855 856 857 858 859 860 861 862 863	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods)					
853 854 855 856 857 858 859 860 861 862 863 864	 6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: 					
853 854 855 856 857 858 859 860 861 862 863 864 865	 6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: 					
853 854 855 856 857 858 859 860 861 862 863 864 865 866	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1 5972 -0.6913 -0.4666 -0.8940 -2.3145					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145					
853 854 855 856 857 858 859 860 861 862 863 863 864 865 866 867 868	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities)					
853 854 855 856 857 858 859 860 861 862 863 864 863 864 865 866 867 868 869	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std Error z value Pr(> z)					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercent) = -1.66090 - 0.30207 - 5.498 - 3.83e-08 ***					
853 854 855 856 857 858 859 860 861 862 863 864 863 864 865 866 867 868 869 870 871	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** con lakecch 2.43654 0.32947 7.395 1.41e-13 ***					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 865 866 867 868 869 870 871 872	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** cop.lakeech 2.43654 0.32947 7.395 1.41e-13 *** con lakeros 2 60899 0 33064 7 891 3 00e-15 ***					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 867 868 869 870 871 872 873	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** cop.lakech 2.43654 0.32947 7.395 1.41e-13 *** cop.lakegos 2.60899 0.33064 7.891 3.00e-15 *** cop.lakelau -0.20226 0.37076 -0.546 0.58540					
853 854 855 856 857 858 859 860 861 862 863 864 863 864 865 866 867 868 869 870 871 872 873 874	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** cop.lakech 2.43654 0.32947 7.395 1.41e-13 *** cop.lakegos 2.60899 0.33064 7.891 3.00e-15 *** cop.lakelau -0.20226 0.37076 -0.546 0.58540 con lakerob 1 00678 0 39853 2 752 0.00592 **					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 865 866 867 868 869 870 871 872 873 874 875	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** cop.lakeech 2.43654 0.32947 7.395 1.41e-13 *** cop.lakeech 2.60899 0.33064 7.891 3.00e-15 *** cop.lakelau -0.20226 0.37076 -0.546 0.58540 cop.lakerob 1.09678 0.39853 2.752 0.00592 ** worm lakeech 0.42579 0.42204 1.009 0.31303					
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 867 868 867 868 870 871 872 873 874 875 876	6) testing for effect of worm family used: (summary answer after running the model below: tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: Min 1Q Median 3Q Max -1.5972 -0.6913 -0.4666 0.8940 2.3145 Coefficients: (2 not defined because of singularities) Estimate Std. Error z value Pr(> z) (Intercept) -1.66090 0.30207 -5.498 3.83e-08 *** cop.lakecch 2.43654 0.32947 7.395 1.41e-13 *** cop.lakegos 2.60899 0.33064 7.891 3.00e-15 *** cop.lakelau -0.20226 0.37076 -0.546 0.58540 cop.lakerob 1.09678 0.39853 2.752 0.00592 ** worm.lakeech 0.42579 0.42204 1.009 0.31303 worm lakegos 0.13006 0.24276 0.294 0.76885					
853 854 855 856 857 858 859 860 861 862 863 864 865	 6) testing for effect of worm family used: (summary answer after running the model belot tapeworm family does not matter) > model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + worm.fam, + data=copepods,family="binomial") > summary(model9) Call: glm(formula = infected.yes.no ~ cop.lake + worm.lake + cop.lake * worm.lake + worm.fam, family = "binomial", data = copepods) Deviance Residuals: 					

878	worm.famboobulk	-0.0	6496 0.2446	9 -0.265 0	.79066	
879	worm.famech27ax31a	a -0	.41496 0.251	45 -1.650	0.09888.	
880	worm.famech3ax1a	-0.0	07461 0.2444	-0.305 0).76019	
881	worm.famechbulk	1	NA NA	NA N	А	
882	worm.famg10ax12a	0.0	0.2541	0.188 0	0.85104	
883	worm.famg2	0.2320	03 0.25941	0.894 0.37	107	
884	worm.famg7ax1a	1	NA NA	NA N.	А	
885	cop.lakeech:worm.lak	keech -(0.33392 0.46	483 -0.718	0.47253	
886	cop.lakegos:worm.lak	keech -(0.60388 0.45	816 -1.318	0.18749	
887	cop.lakelau:worm.lak	eech -0	.31071 0.520	098 -0.596	0.55091	
888	cop.lakerob:worm.lak	keech -0	.43645 0.58	100 -0.751	0.45253	
889	cop.lakeech:worm.lak	kegos -(0.70794 0.47	683 -1.485	0.13763	
890	cop.lakegos:worm.lak	kegos -1	.00586 0.47	187 -2.132	0.03304 *	
891	cop.lakelau:worm.lak	egos -0	.92188 0.564	421 -1.634	0.10227	
892	cop.lakerob:worm.lak	tegos -1	.06786 0.63	030 -1.694	0.09023.	
893						
894	Signif. codes: 0 '***	0.001	·**' 0.01 ·*' 0	0.05 '.' 0.1 '	1	
895						
896	(Dispersion paramete	r for bii	nomial family	taken to be	1)	
897						
898	Null deviance: 216	7.1 on	1621 degrees	of freedom		
899	Residual deviance: 17	/27.2 01	n 1599 degree	s of freedon	n	
900	AIC: 1773.2					
901						
902	Number of Fisher Sco	oring ite	erations: 13			
903		"T D 7	7.11.\			
904	> anova(model9, test	= "LKI	.")			
905	Analysis of Deviance	Table				
906	Madal himamial link	1 la crit				
907	widder: dinofiliai, filik	.: logit				
908	Paspansa: infacted w					
909 010	Response. Infected.ye	5.110				
011	Terms added sequent	ially (fi	rst to last)			
911 912	Terms added sequent	any (m	ist to fast)			
912						
914		Df	Deviance	Resid Df	Resid D	ev Pr(>Chi)
915	NULL	DI	Devidice	1621	1 2167.1	
916	con lake	4	424 73	1617	1742.4	< 2 2e-16 ***
917	worm lake	2	13.35	1615	1729.0	0.001265 **
918	worm.fam	8	0.74	1607	1728.3	0.999425
919	cop.lake:worm.lake	8	1.07	1599	1727.2	0.997795
920		-	·		–	
921	Signif. codes: 0 '***	, 0.001	·**' 0.01 ·*' 0	0.05 '.' 0.1 '	· 1	
922	5		-			
923	Summary: worm fai	nily do	es not matter	!		

924	
925	Commenting all and data and the second large of infortions.
926	Comparing all models on testing the prevalence of infection:
927 928 929 930 931	> AIC(model1, model2, model3, model4, model5, model6, model7, model8, model9) Note: according to lab-mate Christopher Peterson, it is fine to do AIC comparisons between GLM and GLMM models (need to ask him for the reference).
932	Below are the models sorted from best to worst: (the first number after each model name is the
933	degrees of freedom followed by the Akaike Information Criterion (AIC) value:
934	
935	df AIC
936	1) model8 8 1743.843
937	model8 <- glm(infected.yes.no ~ cop.lake + worm.lake + native, data = copepods, family
938	= "binomial") #testing for local adaptation
939	
940	2) model2 8 1744.910
941	$model2 \leq glmer(infected.yes.no \sim cop.lake + worm.lake + (1 plate),$
942	data=copepods,family="binomial") #GLMM not testing for interaction
943	
944	3) model6 15 1753.310
945	model6 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake, data =
946	copepods, family="binomial") #GLM testing for interactions between cop.lake and
947	worm.lake
948	
949	4) model3 6 1753.846
950	model3 <- glmer(infected.yes.no \sim cop.lake + (1 plate), data = copepods, family =
951	"binomial") #testing for copepod lake only
952	
953	5) model1 16 1754.866
954	model1 <- glmer(infected.yes.no \sim cop.lake*worm.lake + (1 plate), data = copepods,
955	family = "binomial") #testing for effects of cop.lake, worm.lake, and their interacions
956	
957	6) model9 21 1760.933
958	model9 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake +
959	worm.fam, data = copepods, family = "binomial") #testing if worm fam had an effect on
960	the prevalence of infection (not, it didn't)
961	
962	7) model7 65 1788.556
963	model7 <- glm(infected.yes.no ~ cop.lake + worm.lake + cop.lake*worm.lake + plate,
964	data=copepods,family="binomial") #testing if plate had an effect on the prevalence of
965	infection: no, it didn't
966	
967	8) model4 4 2163.787
968	model4 <- glmer(infected.yes.no ~ worm.lake + (1 plate), data = copepods, family =
969	"binomial") #testing for effect of worm.lake in prevalence of infection

970	
971	9) model5 2 2171.093
972	model5 <- glmer(infected.yes.no \sim (1 plate), data = copepods, family ="binomial")
973	
974	
975	
976	#### Analyzing intensity of infection (i.e. number of tapeworms per infected copepod)
977	Note: data is Poisson distributed
978	#Then using the following model:
979	
980	7) Analyzing results on intensity including those not infected (i.e. number of worms ≥ 0)
981	> model10 = glm (numb.worm ~ cop.lake + worm.lake + cop.lake*worm.lake.
982	+ data=copepods.family="poisson")
983	> summary(model10)
984	
985	Call:
986	$glm(formula = numb.worm \sim cop.lake + worm.lake + cop.lake * worm.lake.$
987	family = "poisson", data = copepods)
988	
989	Deviance Residuals:
990	Min 1Q Median 3Q Max
991	-1.6042 -0.6794 -0.5164 0.1574 3.5375
992	
993	Coefficients:
994	(Intercept) -1.8302 0.2425 -7.546 4.48e-14 ***
995	cop.lakeech 1.9931 0.2557 7.796 6.38e-15 ***
996	cop.lakegos 2.0824 0.2540 8.197 2.47e-16 ***
997	cop.lakelau -0.2422 0.3382 -0.716 0.47382
998	cop.lakerob 0.8747 0.3299 2.652 0.00801 **
999	worm.lakeech 0.3639 0.3263 1.115 0.26470
1000	worm.lakegos 0.2461 0.3483 0.707 0.47984
1001	cop.lakeech:worm.lakeech -0.5104 0.3480 -1.467 0.14248
1002	cop.lakegos:worm.lakeech -0.5044 0.3440 -1.466 0.14260
1003	cop.lakelau:worm.lakeech -0.1741 0.4578 -0.380 0.70367
1004	cop.lakerob:worm.lakeech -0.3128 0.4640 -0.674 0.50015
1005	cop.lakeech:worm.lakegos -0.5809 0.3719 -1.562 0.11827
1006	cop.lakegos:worm.lakegos -0.6599 0.3685 -1.791 0.07336.
1007	cop.lakelau:worm.lakegos -0.5585 0.4983 -1.121 0.26241
1008	cop.lakerob:worm.lakegos -0.8069 0.5314 -1.518 0.12892
1009	
1010	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1011	
1012	(Dispersion parameter for poisson family taken to be 1)
1013	
1014	Null deviance: 2107.7 on 1621 degrees of freedom
1015	Residual deviance: 1498.2 on 1607 degrees of freedom

1016	AIC: 2959.8						
1017	Number of Fisher Scoring iterations: 6						
1018	Number of Fisher Scotting iterations. 0						
1020	> anova(model10, test = "LRT")						
1021	Analysis of Deviance Table						
1022							
1023	Model: poisson, link:	log					
1024							
1025	Response: numb.worr	m					
1026							
1027	Terms added sequent	ially (f	first to last)				
1028							
1029							
1030		Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)	
1031	NULL			1621	2107.7		
1032	cop.lake	4	584.18	1617	1523.5	< 2.2e-16 ***	
1033	worm.lake	2	19.58	1615	1504.0	5.61e-05 ***	
1034	cop.lake:worm.lake	8	5.72	1607	1498.2	0.6781	
1035							
1036	Signif. codes: 0 ***	' 0.00	l '**' 0.01 '	*' 0.05 '.' 0.	.1 • ' 1		
1037							
1038	Results: It seems that	at cop	epod lake a	nd worm la	ke have sign	ificant effects on intens	ity, but
1039	not on their interact	ions					
1040							
1041	8) What if I include	a fixe	d variable i	in there, let'	s say tapewo	orm family, and using "	glmer"
1042	for GLMM						
1043	> model11 <- glmer(n	numb.v	worm $\sim cop$.lake*worm.	lake $+ (1 wor)$	m.fam),	
1044	+ data=cop	epods,	family="poi	isson")			
1045	> summary(model11))					
1046	Generalized linear mi	xed m	odel fit by n	naximum like	elihood (Lapla	ace Approximation) [glm	erMod]
1047	Family: poisson (lo	g)					
1048	Formula: numb.worm	n ~ cop	lake * wor	m.lake + (1	worm.fam)		
1049	Data: copepods						
1050							
1051	AIC BIC logLi	k devi	ance df.resi	b			
1052	2961 7 3047 9 -1464 8 2929 7 1606						
1053	2961.7 3047.9 -14	01.0		500			
1054	2961.7 3047.9 -14	0110					
1024	Scaled residuals:	0110					
1055	Scaled residuals: Min 1Q Median	n 30	Q Max				
1055 1056	2961.7 3047.9 -14 Scaled residuals: Min 1Q Mediat -1.1474 -0.4741 -0.35	n 30 551 0.	Q Max 1667 7.414	9			
1055 1056 1057	2961.7 3047.9 -14 Scaled residuals: Min 1Q Mediat -1.1474 -0.4741 -0.35	n 30 551 0.	Q Max 1667 7.414	9			
1055 1055 1056 1057 1058	2961.7 3047.9 -14 Scaled residuals: Min 1Q Median -1.1474 -0.4741 -0.35 Random effects:	n 30	Q Max 1667 7.414	9			
1055 1055 1056 1057 1058 1059	2961.7 3047.9 -14 Scaled residuals: Min 1Q Mediat -1.1474 -0.4741 -0.35 Random effects: Groups Name	n 30 551 0. Varian	Q Max 1667 7.414 ce Std.Dev.	9			
1055 1056 1057 1058 1059 1060	2961.7 3047.9 -14 Scaled residuals: Min 1Q Mediau -1.1474 -0.4741 -0.35 Random effects: Groups Name W worm.fam (Intercept	n 30 551 0. Varian) 0.001	Q Max 1667 7.414 ce Std.Dev. 1736 0.0416	9			
1054 1055 1056 1057 1058 1059 1060 1061	2961.7 3047.9 -14 Scaled residuals: Min 1Q Mediat -1.1474 -0.4741 -0.35 Random effects: Groups Name worm.fam (Intercept Number of obs: 1622	n 30 551 0. Varian) 0.001 , grout	Q Max 1667 7.414 ce Std.Dev. 736 0.0416 ps: worm.fa	9 6 .m, 10			

1062								
1063	Fixed effects:							
1064	Estimate Std. Error z value $Pr(> z)$							
1065	(Intercept) -1.8330 0.2438 -7.517 5.61e-14 ***							
1066	cop.lakeech 1.9938 0.2557 7.798 6.27e-15 ***							
1067	cop.lakegos 2.0835 0.2541 8.201 2.39e-16 ***							
1068	cop.lakelau -0.2397 0.3383 -0.709 0.47863							
1069	cop.lakerob 0.8760 0.3299 2.655 0.00793 **							
1070	worm.lakeech 0.3672 0.3282 1.119 0.26322							
1071	worm.lakegos 0.2494 0.3501 0.712 0.47618							
1072	cop.lakeech:worm.lakeech -0.5132 0.3482 -1.474 0.14044							
1073	cop.lakegos:worm.lakeech -0.5069 0.3442 -1.473 0.14082							
1074	cop.lakelau:worm.lakeech -0.1784 0.4581 -0.389 0.69697							
1075	cop.lakerob:worm.lakeech -0.3201 0.4645 -0.689 0.49076							
1076	cop.lakeech:worm.lakegos -0.5813 0.3718 -1.563 0.11795							
1077	cop.lakegos:worm.lakegos -0.6605 0.3685 -1.792 0.07310							
1078	$cop_lakelau:worm_lakegos0.5613 = 0.4984 -1.126 = 0.26013$							
1079	con lakeroh:worm lakegos -0.8078 0.5315 -1.520 0.12855							
1080								
1081	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
1082								
1083								
1084	> AIC(model10 model11)							
1085	df AIC							
1086	model10 15 2959 820 $\#$ glm: numb worm ~ worm lake + con lake + worm lake*con lake							
1087	model11 16 2061 650 #glmer: numb worm \sim worm lake \pm cop.lake \pm worm fam [fixed yer]							
1088	moderri 10 2901.059 #gimer. humo.worm worm.hake cop.hake + worm.hum [fixed var]							
1089	Summary: both models seem pretty similar							
1000	Summary. Jour models seem preuv simmar							
1090								
1092	9) what if I select only those conenads that got infected for the intensity analysis (as it should							
1093	be)?							
1094	preva = filter (copepods, numb.worm > 0) #using "filter" in "dplver" R package to extract infected							
1095	cops from dataset.							
1096	hist(preva $numb$ worm, vlab = "# copepods")							
1097	#Data is still Poisson distributed.							
1098								
1099								
1100	model12 = glm (numb worm ~ con lake + worm lake + con lake*worm lake.							
1101	data = preva family="poisson")							
1102	auta provultatinity polision)							
1103	Deviance Residuals							
1104	Min 10 Median 30 Max							
1105	-0.7200 -0.4976 -0.1582 0.2137 2.0344							
1106								
1107	Coefficients:							

1108	Estimate Std. Error z value $Pr(> z)$							
1109	(Intercept) 0.060625 0.242536 0.250 0.8026							
1110	cop.lakeech 0.515466 0.255655 2.016 0.0438 *							
1111	cop.lakegos 0.582373 0.254043 2.292 0.0219 *							
1112	cop.lakelau -0.003466 0.338200 -0.010 0.9918							
1113	cop.lakerob 0.101894 0.329884 0.309 0.7574							
1114	worm.lakeech 0.093526 0.326255 0.287 0.7744							
1115	worm.lakegos 0.072907 0.348315 0.209 0.8342							
1116	cop.lakeech:worm.lakeech -0.251881 0.348006 -0.724 0.4692							
1117	cop.lakegos:worm.lakeech -0.198414 0.344046 -0.577 0.5641							
1118	cop.lakelau:worm.lakeech 0.003466 0.457840 0.008 0.9940							
1119	cop.lakerob:worm.lakeech -0.061889 0.463968 -0.133 0.8939							
1120	cop.lakeech:worm.lakegos -0.291160 0.368767 -0.790 0.4298							
1121	cop.lakegos:worm.lakegos -0.256372 0.368523 -0.696 0.4866							
1122	cop.lakelau:worm.lakegos 0.093078 0.493503 0.189 0.8504							
1123	cop.lakerob:worm.lakegos -0.117643 0.531446 -0.221 0.8248							
1124								
1125	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
1126								
1127	(Dispersion parameter for poisson family taken to be 1)							
1128								
1129	Null deviance: 238.68 on 621 degrees of freedom							
1130	Residual deviance: 211.90 on 607 degrees of freedom							
1131	AIC: 1673.5							
1132								
1133	Number of Fisher Scoring iterations: 4							
1134								
1135	<pre>> anova(model12, test = "LRT")</pre>							
1136	Analysis of Deviance Table							
1137								
1138	Model: Poisson, link: log							
1139								
1140	Response: numb.worm							
1141								
1142	Terms added sequentially (first to last)							
1143								
1144								
1145	Df Deviance Resid. Df Resid. Dev Pr(>Chi)							
1146	NULL 621 238.68							
1147	cop.lake 4 21.5604 $61'/$ 217.12 0.0002451 ***							
1148	worm.lake 2 3.3173 615 213.80 0.1903991							
1149	cop.lake:worm.lake 8 1.9074 607 211.90 0.9837214							
1150								
1151	Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 . 0.1 * 1							
1152								

1153 Results: with only the infected copepods, it seems like now only the copepod lakes explains the 1154 results. We have the distinct hunch that it has to be either Echo Lake and/or Gosling lake's 1155 copepods who are explaining most of these results.

```
1157
       10) What if we include a GLMM model using worm fam as the fix variable (only for the
1158
       infected copepods; this is for intensity):
1159
       Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)
1160
       model13 \leq glmer(numb.worm \sim cop.lake*worm.lake + (1|worm.fam),
1161
                 data = preva, family="poisson")
1162
1163
          AIC
                 BIC logLik deviance df.resid
         1675.5 1746.4 -821.7 1643.5
1164
                                         606
1165
1166
       Scaled residuals:
1167
          Min
                      Median
                                      Max
                 10
                                3Q
       -0.6541 -0.4636 -0.1543 0.2195 2.5118
1168
1169
1170
       Random effects:
        Groups Name
                          Variance Std.Dev.
1171
1172
        worm.fam (Intercept) 0
                                 0
       Number of obs: 622, groups: worm.fam, 10
1173
1174
1175
       Fixed effects:
1176
                         Estimate Std. Error z value Pr(|z|)
                         0.060625 0.242545 0.250 0.8026
1177
       (Intercept)
1178
       cop.lakeech
                          0.515466 0.255665 2.016 0.0438 *
                          0.582373 0.254052 2.292 0.0219 *
       cop.lakegos
1179
       cop.lakelau
                         -0.003466 0.338206 -0.010 0.9918
1180
       cop.lakerob
                          0.101894 0.329891 0.309 0.7574
1181
       worm.lakeech
1182
                            0.093526 0.326264 0.287 0.7744
1183
       worm.lakegos
                            0.072907 0.348328 0.209 0.8342
1184
       cop.lakeech:worm.lakeech -0.251881 0.348015 -0.724 0.4692
1185
       cop.lakegos:worm.lakeech -0.198414 0.344055 -0.577 0.5641
       cop.lakelau:worm.lakeech 0.003466 0.457846 0.008 0.9940
1186
       cop.lakerob:worm.lakeech -0.061889 0.463976 -0.133 0.8939
1187
       cop.lakeech:worm.lakegos -0.291160 0.368781 -0.790 0.4298
1188
       cop.lakegos:worm.lakegos -0.256372 0.368537 -0.696 0.4866
1189
1190
       cop.lakelau:worm.lakegos 0.093078 0.493512 0.189 0.8504
1191
       cop.lakerob:worm.lakegos -0.117643 0.531449 -0.221 0.8248
1192
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1193
1194
1195
        > AIC(model12,model13)
1196
                   df
                         AIC
1197
       model12 15 1673.494
1198
       model13 16 1675.494
```

1199	Results: both models seem very similar								
1200									
1201	11) Local adaption on intensity of infection levels (using only infected copepods for analyses):								
1202	> summary(model16)								
1203									
1204	Call:								
1205	$glm(formula = numb.worm \sim cop.lake + worm.lake + native, family = "poisson",$								
1206	data = preva)								
1207									
1208	Deviance Residuals:								
1209	Min 1Q Median 3Q Max								
1210	-0.7056 -0.4897 -0.1383 0.1908 2.0068								
1211									
1212	Coefficients:								
1213	Estimate Std. Error z value $Pr(> z)$								
1214	(Intercept) 0.201136 0.143104 1.406 0.15987								
1215	cop.lakeech 0.354473 0.145691 2.433 0.01497 *								
1216	cop.lakegos 0.430396 0.144167 2.985 0.00283 **								
1217	cop.lakelau -0.003657 0.195147 -0.019 0.98505								
1218	cop.lakerob 0.013441 0.202257 0.066 0.94702								
1219	worm.lakeech -0.076399 0.078612 -0.972 0.33112								
1220	worm.lakegos -0.112841 0.087777 -1.286 0.19860								
1221	nativeTRUE -0.065931 0.081718 -0.807 0.41977								
1222									
1223	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								
1224									
1225	(Dispersion parameter for poisson family taken to be 1)								
1226									
1227	Null deviance: 238.68 on 621 degrees of freedom								
1228	Residual deviance: 213.15 on 614 degrees of freedom								
1229	AIC: 1660.7								
1230									
1231	> anova(model16, test = "LRT")								
1232	Analysis of Deviance Table								
1233	•								
1234	Model: Poisson, link: log								
1235									
1236	Response: numb.worm								
1237	1								
1238	Terms added sequentially (first to last)								
1239									
1240									
1241	Df Deviance Resid. Df Resid. Dev Pr(>Chi)								
1242	NULL 621 238.68								
1243	cop.lake 4 21.5604 617 217.12 0.0002451 ***								
1244	worm.lake 2 3.3173 615 213.80 0.1903991								

1245	native	1	0.6538	614	213.15	0.4187510				
1246										
1247	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1									
1248										
1249	Results: again, only copepod lake seems to account for the data									
1250										
1251										
1252	The best models for intensity of infection (using only the data from infected copepods):									
1253	Below are the models sorted from best to worst: (the first number after each model name is the									
1254	degrees of freedom followed by the Akaike Information Criterion (AIC) value:									
1255										
1256			Df	AIC						
1257	1.	model 16	8	1660.748						
1258		glm (numb	worm $\sim co$	op.lake + v	vorm.lake +	+ native, data = preva, family="poisson")				
1259										
1260	2.	Model 12	15	1673.494						
1261		glm (numl	o.worm ~	cop.lake	+ worm.la	.lake + cop.lake*worm.lake, data = preva,				
1262		family="po	isson")							
1263										
1264	3.	Model 13	16	1675.494						
1265		glmer(num	b.worm	~ cop.la	ike*worm.la	lake + $(1 $ worm.fam $)$, data = preva,				
1266		family="po	isson")							
1267										
1268										