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Abstract The Manado area (Indonesia–North Sula-
wesi), a marine high diversity hot-spot, hosts 7 species
of anemonefish (family Pomacentridae, subfamily
Amphiprioniae) living in symbiosis with 9 species of
sea anemones (family Stichodactylidae and Actiniidae).
This high biological diversity −27% and 80%, respec-
tively, of the total known diversity of anemonefish and
sea anemones—allows us to test different hypotheses
focused on the obligate mutualism between anemone-
fish and sea anemones. In the Manado area, species
richness of anemones and anemonefish across several
sites was not correlated, but all anemones contained at

least one fish individual, and there was a strong positive
correlation between the numbers of individual anemone-
fish and anemones. As expected, each fish species had a
preferred anemone host; also a partial niche overlap
(Pianka’s Index) was often detected. The analysis of
unique species composition suggests that competition is
not an important factor determining the presence or
absence of particular combinations of either anemone-
fish or host anemones (no evidence of competitive
exclusion). The NODF algorithm showed that, at both a
regional and local scale, the interaction between
anemonefish and host anemones is not significantly
nested, as a result of a combination of local conditions
with competition, forcing species that regionally are
more generalist to become more specialist.
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Introduction

The pattern of interactions between partners engaged in
mutualistic relationships is determined by a complex
interplay of evolution (including co-evolution), histor-
ical contingency and ecological opportunity. Identifying
these patterns, and their possible causes, is important for
understanding why particular species interact with some
species but not others. The implications of this
interaction structure for determining local ecological
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success and stability of the assemblage are many,
ultimately the promotion and preservation of local high
levels of biodiversity, particularly within hotspots such
as tropical coral reefs. For example, local extinction of
key species can result in a cascade of further extinctions,
which may be predictable from examining the topology
and strength of the relationships within an assemblage
(Memmott et al. 2004; Srinivasan et al. 2007).

Knowledge of the interaction structure of terrestrial
mutualisms continues to grow, particularly plant-
focussed relationships such as biotic pollination, seed
dispersal and protection (Bascompte et al. 2003;
Vázquez et al. 2009). In contrast our understanding of
the assemblage topology of marine mutualisms is much
less advanced. Several examples of different degrees of
association between organisms are known, especially in
coral reef areas where the high biological diversity
frequently implies high number of interactions (though
see Lester and Sewell 1989; Parmentier and Vandewalle
2005; Randall et al. 2005; Floeter et al. 2007; Ollerton
et al. 2007). Mutualistic relationships in marine ecosys-
tems are important for determining primary productivity
within habitats, for example the zooxanthellae algae
which exist within coral polyps (Muscatine 1990). They
can be also a factor in maintaining local species
diversity (Bshary 2003).

This study focuses on the obligate mutualism
between anemonefish and sea anemones. Anemone-
fish comprise some 26 currently recognized species in
the genera Amphiprion and Premnas belonging to the
subfamily Amphiprioninae (Perciformes: Pomacentri-
dae) (Allen 1991; Jang-Liaw et al. 2002). However, a
recent study based on DNA analysis suggested a
monophyletic origin, thus the 2 genus partition could
be incorrect (Santini and Polacco 2006). Natural
hybrids also exist which have previously been named
as distinct species (Fautin and Allen 1997; Ollerton et
al. 2007). Anemonefish are obligate associates of 10
species of sea anemones (Anthozoa: Actiniaria) from
three unrelated families (Dunn 1981; Fautin and Allen
1997; Elliott et al. 1999), a mutualistic relationship that
extends from the Red Sea, through the Indian Ocean to
the western Pacific, and from south-eastern Australia to
the latitude of Tokyo. The interaction between anemo-
nefish and hosts anemone provides protection from
predators for the fish and their eggs because the tentacles
of the anemone are stinging to most other fish.
Anemones are in turn protected by the anemonefish
from predators such as butterflyfishes (Fautin 1991;

Godwin and Fautin 1992; Holbrook and Schmitt 2005)
and waste ammonia excreted by the anemonefish is
used by the anemone’s symbiotic dinoflagellates
(zooxanthellae—see Porat and Chadwick-Furman
2004, 2005; Roopin et al. 2008). This is therefore an
extremely rare example of a mutualism in which both
groups of organisms provide the same service, in this
case physical protection (Ollerton 2006), though
mediated in part by a third mutualistic partner, the
dinoflagellate (Fautin 1991).

Anemonefish and their host anemones have been
used as model systems to test ideas regarding the
evolution of specificity and host selection (Arvedlund
et al. 1999; Elliott et al. 1999), meta-population theory
and species coexistence (Hattori 1995, 2002; Schmitt
and Holbrook 2003), the topology of the mutualism
(Ollerton et al. 2007), larval recruitment (Jones et al.
2005), social interactions (Buston 2003; Mitchell and
Dill 2005; Buston and Cant 2006), and breeding
behaviour (Munday et al. 2006), in part because we
have a relatively complete knowledge of the diversity
of anemonefish and anemones and the extent of their
interaction (Fautin and Allen 1997). In common with
most other mutualistic interactions, the anemone-
anemonefish mutualism is nested in structure (Ollerton
et al. 2007). At a regional scale, the most generalist
fish interact with both generalist and specialist ane-
mones, and the most generalist anemones interact with
generalist and specialist fish; specialist-specialist inter-
actions do not occur (Ollerton et al. 2007). Data on the
anemonefish-anemone interaction were collected in the
hot-spot of coral reef biodiversity areas around
Manado, North Sulawesi (Indonesia), and used to
address the following questions: 1–How species-rich
are local assemblages of anemonefish and their host
anemones within the region and is this richness
correlated between the two groups (i.e. does high local
anemone diversity support high fish diversity)? 2–Is
local species richness determined by the presence of
suitable partners or by abiotic factors such as substrate
or water depth, and is competition determining the
presence or absence of particular combinations of
anemonefish and/or host anemone species? 3–Is
anemonefish specialisation structured by anemone
abundance, with more locally abundant anemones
interacting with a greater diversity of fish and vice
versa, as suggested by Ollerton et al. (2007)? 4–Is there
a predictable interaction structure between the fish and
the anemones or is it random, and at what scale (local
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or regional)? Specifically, is the interaction structure
nested? 5–Does the occurrence of the mutualists co-
vary in a predictable way across the sites, or are the
local assemblages random with respect to regional
species pool? More specifically, is there evidence that
local fish assemblages are structured by competitive
exclusion?

Materials and methods

Study area and sampling

A total of 233 anemones and 772 anemonefish
individuals were observed during 45–60 min SCUBA
dives at depth between 1 and 40 m in 16 sampling
sites located all over Bunaken Islands and Manado
Coast (≈ 1°40′ N–124°39′ E and 1°33′ N–124°48′ E;
Fig. 1), during the month of July 2006. Sampling sites
were chosen trying to include the widest range of
habitats present in the Bunaken area (vertical slopes,
patch reefs, sandy bottom). This area is characterised
by fringing reefs on Bunaken islands and mainly by
wide bays of volcanic sand and patch reefs along the
Manado coast (Tomascik et al. 1997). Seven anemo-
nefishes (Amphiprion clarkii, A. melanopus, A.
ocellaris, A. perideraion, A. polymnus, A. sandaraci-
nos, Premnas biaculeatus) (Fig. 2) live in the
Bunaken area, inhabiting at least nine different sea
anemones (Entacmaea quadricolor; Macrodactyla
doreensis (Fam. Actiniidae); Heteractis aurora; H.
crispa; H. magnifica; H. malu; Stichodactyla gigan-
tea; S. haddoni; S. mertensii (Fam Stichodactylidae)).
For each observation, the species (both for anemones
and anemonefishes) and the number of anemonefish
individuals were recorded. The area covered by the
tentacles of each host was regarded as an oval and
estimated as (long axial length) × (short axial length)
× π/4 (Hattori 2002). In the dimensional analysis,
clonal forms of E. quadricolor were not considered,
because they live in the substrate of branching hard
coral of Acropora spp. where it is impossible to
measure each animal without damaging the reef.

Statistical methods

EcoSim v. 7.0 (Gotelli and Entsminger 2001) was
used for niche overlap and co-occurrence calculation.
SPSS 13.0 package was used for the one-way

ANOVA statistical calculation and Bonferroni post-
hoc tests. Correlations have been calculated using the
Pearson or Spearman (for ranked data) coefficients.
The “preferred host” of anemonefish was assessed
calculating the “Standardized Selection Ratio (SSR)”
(values between 0 and 1) (Manly et al. 1993). Manly’s
standardized selection ratio represents the probability
that an individual will use a particular habitat type,
taking into account the different resource availability.
For each anemonefish species (i) inhabiting an
anemone species (j), SSR was calculated as:

SSR ¼ wi=
X

wj

where wi ¼ oi=pj
� �

Oi is the relative frequency of the anemonefish
species i and pj the relative frequency of the anemone
species j. Higher values of SSR indicate a strong
preference for the selected resource. The Log-
Likelihood statistic (χ2L) (Manly et al. 1993) was
used to check the significance of the observed
distribution under a null hypothesis of a random host
choice.

Pianka’s Index (O) (Pianka 1973) was used as to
estimate the niche overlap among species.

To determine whether the occurrence of the
mutualists co-varies in a predictable way across the
sites, or whether the local assemblages are random
with respect to the regional species pool, we used the
Co-occurrence module of EcoSim 7.0 to compare the
patterns of fish and anemone presence and absence
against two co-occurrence metrics:

(1) the C-score, which is the average number of
“checkerboard units” between all pairs of fish or
anemone species (Stone and Roberts 1990).
Checkerboard units are sub-matrices with the
larger matrix in which pairs of species never co-
occur. In a competitively structured community
the mean number of checkerboard units (and
hence the C-score) is expected to be significantly
larger than would occur by, when compared to
the distribution of random null models

(2) The number of unique species combinations
represented in different localities. There are 2n

possible species combinations for an assemblage
of n species (including sites where no species are
present). In an assemblage that is structured by
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competition, we would expect fewer species
combinations than occur by chance, compared
to the distribution of random null models. For
both of these patterns, EcoSim generated 5000
iterations of the null models with the default
equiprobable row and column constraints, as
recommended (Gotelli and Entsminger 2001).

Nestedness analysis

To determine whether the host anemone and anemo-
nefish interactions were predictably nested in struc-
ture, the local and regional interaction matrices were
analysed using the ANINHADO software (Guimarães
and Guimarães 2006). ANINHADO is based on the
Nestedness Calculator from AICS Research Inc.
(Atmar and Patterson 1993), but extends the utility of
the previous software by incorporating more realistic
null models of species interactions into the analysis The
NODF (nestedness metric based on overlap and decreas-
ing fill) approach was used as this has been shown to be

more rigorous and conservative that other algorithms
(Almeida-Neto et al. 2008) and compared against the
Ce null model (in which the level of generalisation of
each species in the random iterations is approximately
equal to that observed in the data matrix), likewise a
more conservative (and biologically realistic) model
(Bascompte et al. 2003). Only those local sites with ≥4
anemonefish and host anemones were included in the
analysis (i.e. a 4×4 matrix—see sites in Table 1).

Results

Species richness and abundance of anemones
and anemonefish

The survey of 16 sites in the Manado region recorded
a total of 7 anemonefish species from the genera
Amphiprion (6 spp.) and Premnas (1 spp.) interacting
with 8 anemone species from the genera Heteractis (4
spp.), Stichodactyla (2 spp.), Macrodactyla (1 sp.)
and Entacmaea (1 sp.) (Table 1). No S. gigantea

Fig. 1 Map of the sites in
the Manado region
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individual was observed during this survey. The mean
number (±SD) of anemone species per site was 3.9
(±1.0) and ranged from 2 at Johnson and Bajo to 6 at
Bahowo. The mean species richness of anemonefish
was 3.9 (±0.9) and ranged from 2 at Batu Kapal to 5
at Tanjung Pisok, Bualo and Bahowo. There was no
correlation between the species richness of anemones
and anemonefish across the sites (Pearson’s r=0.41,
n=16, p=0.11). The mean number of individual
anemones per site was 14.6 (±8.1) and ranged from
3 at Johnson to 33 at Tanjung Pisok. Every anemone
hosted at least one anemonefish, such that there was a

strong positive correlation between the number of
individual fish and the number of partner anemones
across sites (Pearson’s r=0.99, n=16, p<0.001). Sea
anemones were detected in a range of depths varying
from 1 up to 40 m (Fig. 3). There was no significant
difference in species depth except for H. crispa and
H. aurora and H. magnifica (ANOVA, Bonferroni
post-hoc test, F=5.186, p<0.001) (as there were only
2 observations of M. doreensis, this species was not
included in the analysis). Among serea anemones, S.
mertensii and H. magnifica presented larger areas,
although a notable variability was recorded (Fig. 3).

Fig. 2 Anemonefish and
sea anemone species from
the Manado area, North
Sulawesi, Indonesia
1–Amphiprion clarkii (black
colour form) on Stichodac-
tyla mertensii. 2–Amphiprion
clarkii on Heteractis aurora.
3–Amphiprion
perideraion on Heteractis
crispa. 4–Amphiprion
polymnus on Stichodactyla
haddoni. 5–Amphiprion
melanopus on Entacmaea
quadricolor (clonal form).
6–Amphiprion ocellaris on
Heteractis magnifica 7–
Amphiprion sandaracinos
(caring for eggs) on Sticho-
dactyla mertensii.
8–Premnas biaculeatus on
Entacmaea quadricolor
(solitary form)
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Table 1 Interaction matrices for the anemonefish-anemone mutualism at 16 sites in the Manado region of Indonesia

Region Anemone species Anemonefish species (genera Amphiprion and Premnas)

Bahowo A. clarkii P. biaculeatus A. perideraion A. ocellaris A. sandaracinos

E. quadricolor 1 1 0 0 0

H. aurora 1 0 0 0 0

H. crispa 1 0 1 0 0

H. magnifica 0 0 1 1 0

H. malu 1 0 0 0 0

S. mertensii 1 0 0 0 1

Bajo A. ocellaris A. perideraion A. clarkii A. sandaracinos

H. magnifica 1 1 0 0

S. mertensii 0 0 1 1

Batu Kapal A. clarkii A. sandaracinos

H. aurora 1 0

H. crispa 1 0

S. mertensii 1 1

Bualo A. melanopus P. biaculeatus A. clarkii A. perideraion A. sandaracinos

E. quadricolor 1 1 1 0 0

H. crispa 0 0 1 1 0

H. magnifica 0 0 0 1 0

S. mertensii 0 0 1 0 1

Fukui A. clarkii A. perideraion A. ocellaris A. sandaracinos

H. crispa 1 1 0 0

H. magnifica 0 1 1 0

S. mertensii 1 0 0 1

Jalan m. A. clarkii A. perideraion A. ocellaris A. sandaracinos

H. aurora 1 0 0 0

H. crispa 1 1 0 0

H. magnifica 0 1 1 0

S. mertensii 1 0 0 1

Johnson P. biaculeatus A. clarkii A. perideraion

E. quadricolor 1 0 0

H. crispa 0 1 1

Kasegaran A. clarkii A. perideraion A. polymnus

H. crispa 1 1 0

H. magnifica 0 1 0

Macrodactyla doreensis 1 0 1

S. haddoni 0 0 1

S. mertensii 1 0 0

Likuan 1 A. clarkii A. melanopus P. biaculeatus A. perideraion

E. quadricolor 1 1 1 0

H. aurora 1 0 0 0

H. crispa 1 0 0 1

S. mertensii 1 0 0 0
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Clonal forms of E. quadricolor were not included in
the analysis due to the impossibility of an accurate
estimate of the area. All hosts were relatively abundant
in the Manado and Bunaken area, except S. haddoni,
present only in sandy lagoons of Manado coast. No
data of anemone density have been collected.

Host anemone specialisation

Across the region, anemone species hosted 1, 2 or 3
species of anemonefish with E. quadricolor being the
single most generalist anemone species. Within sites,
the majority of anemone species (51.6%) hosted a

Table 1 (continued)

Region Anemone species Anemonefish species (genera Amphiprion and Premnas)

Mandolin P. biaculeatus A. clarkii A. perideraion A. ocellaris A. sandaracinos

E. quadricolor 1 0 0 0 0

H. crispa 0 1 1 0 0

H. magnifica 0 0 0 1 0

S. mertensii 0 1 0 0 1

Mapia P. biaculeatus A. perideraion A. ocellaris A. polymnus

E. quadricolor 1 0 0 0

H. crispa 0 1 0 0

H. magnifica 0 0 1 0

S. haddoni 0 0 0 1

Mike A. clarkii P. biaculeatus A. perideraion A. sandaracinos

E. quadricolor 1 1 0 0

H. crispa 1 0 1 0

H. magnifica 0 0 1 0

S. mertensii 1 0 0 1

Sachiko P. biaculeatus A. clarkii A. perideraion A. sandaracinos

E. quadricolor 1 0 0 0

H. crispa 0 1 1 0

H. magnifica 0 0 1 0

S. mertensii 0 1 0 1

T. Kopi A. melanopus A. clarkii A. perideraion A. ocellaris A. sandaracinos

E. quadricolor 1 0 0 0 0

H. aurora 0 1 0 0 0

H. crispa 0 1 1 0 0

H. magnifica 0 0 1 1 0

S. mertensii 0 1 0 0 1

T. Pisok A. clarkii P. biaculeatus A. perideraion A. ocellaris A. sandaracinos

E. quadricolor 1 1 0 0 0

H. crispa 1 0 1 0 0

H. magnifica 0 0 1 1 0

S. mertensii 0 0 0 0 1

Timur P. biaculeatus A. clarkii A. perideraion

E. quadricolor 1 0 0

H. crispa 0 1 0

H. magnifica 0 0 1

S. mertensii 0 1 0

1 indicates an observed interaction; 0 indicates no interaction. Sites are listed alphabetically
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single anemonefish species, 45.2% hosted two spe-
cies, whilst 3.2% host three species (Table 1). There
was a statistically significant correlation between host
anemone specialisation (i.e. the number of anemone-
fish species hosted) and the abundance of that
anemone species at a site (Spearman’s r=0.60, n=
62, p≪0.001) (Fig. 4). A statistically significant
correlation also existed between anemonefish special-
isation (i.e. the number of anemone species used by
fish as hosts) and the abundance of that anemonefish

species at a site (Spearman’s r=0.65, n=64, p≪0.001)
(Fig. 5).

Anemonefish specialisation

Host use

Anemonefish species utilised 1, 2 or 6 host
anemone species across all sites, with A. clarkii
being the most generalist species (Table 2). On the

Fig. 3 Mean area of sea
anemone species (m ± SD)

Fig. 4 Relationship between
anemone specialisation
(number of anemonefish
hosted per species per site)
and anemone abundance
(number of individuals per
species per site) Spearman’s
r=0.60, n=62, p≪0.001.
Between parenthesis the
number of observations of
each pair of values (shown
only if >1)
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contrary, A. ocellaris, A. sandaracinos, A. melano-
pus and P. biaculeatus inhabited only one anemone
species (both with a preference for E. quadricolor).
All anemonefish species monitored revealed a
preferred sea anemone host, identified by the highest
standardized selection ratio (SSR) between all the
possible sea anemone species (Table 3). Usually,
only one species of anemonefish inhabits a specific
anemone, but in the Manado area there was a
relatively high frequency of cohabitations among
different anemonefish species. Particularly, a very

high cohabitation frequency (0.31) was observed in
anemones inhabited by A. clarkii, which shared its
microhabitat with A. perideraion (in H. crispa) and A.
sandaracinos (in S. mertensii) (Table 4). A. clarkii
resulted as the dominant species [bigger size, aggres-
sive behaviour, actively in charge of sea anemone
defence—the first to react to the observer’s approach-
ing—(Godwin and Fautin 1992)] in 89% (16/18) of
cohabitations with A. perideraion and in 91% (10/
11) with A. sandaracinos. The small A. sandaraci-
nos was found in cohabitation in the 50% of

Fig. 5 Relationship between
anemonefish specialisation
(number of anemone species
used as hosts per fish species
per site) and anemonefish
abundance (number of fish
individuals per species per
site). Spearman’s r=0.65,
n=64, p≪0.001. Between
parentheses the number of
observations of each pair of
values (shown only if >1)

Table 2 Quantitative matrix of the interactions between anemone hosts and anemonefish across the Manado region. Data show the
number of times an anemone species is recorded as hosting a fish species across all 16 sites. Also included is the number of host
anemone species used by each anemonefish species and the number of anemonefish species hosted per anemone

A.
clarkii

A.
perideraion

A.
polymnus

A.
melanopus

P.
biaculeatus

A.
ocellaris

A.
sandaracinos

Total number of
anemonefish hosted
per anemone species

E. quadricolor 6 0 0 5 13 0 0 3

H. crispa 52 64 0 0 0 0 0 2

S. mertensii 26 0 0 0 0 0 22 2

M. doreensis 1 0 1 0 0 0 0 2

H. magnifica 0 28 0 0 0 25 0 2

H. aurora 8 0 0 0 0 0 0 1

H. malu 1 0 0 0 0 0 0 1

S. haddoni 0 0 8 0 0 0 0 1

Total number of host
anemone species per
anemonefish species

6 2 2 1 1 1 1

Table 2 Quantitative matrix of the interactions between anem-
one hosts and anemonefish across the Manado region. Data show
the number of times an anemone species is recorded as hosting a

fish species across all 16 sites. Also included is the number of
host anemone species used by each anemonefish species and the
number of anemonefish species hosted per anemone
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observations, and it was the subaltern species in the
91% of cohabitations. In H. crispa there was a
significant difference between the area of the
anemones inhabited only by A. clarkii against those
occupied only by A. perideraion. Indeed, the first
one was present in anemones with areas significantly
lower than those inhabited by A. perideraion
(ANOVA, Bonferroni post-hoc test, p<0.01), while
anemones with an intermediate area were often
shared by both species. An opposite situation was
detected in cohabitations between A. clarkii and A.
sandaracinos inside S. mertensii. In this case, A.
clarkii inhabited larger anemones, while A. sandar-
acinos preferred the smaller ones (Table 5).

Anemonefish niche overlap

The Pianka’s niche overlap Index (O) (Table 6)
showed that an almost complete niche overlap occurs
between A. melanopus and P. biaculeatus (O=1.00),
as already highlighted by the same preferred host
choice (E. quadricolor). However, A. melanopus
seems to prefer shallow water anemones than P.
biaculeatus, but this difference in depth was not
significant (ANOVA, Bonferroni post-hoc test, F=
5.186, n.s.). All specimens of E. quadricolor at depth
greater than 9 m are occupied by A. clarkii (Fig. 6). A
high value of O has been detected also for A.
perideraion and A. ocellaris (O=0.74), while the

Table 3 Host preference in anemonefish of Bunaken area, expressed as SSR (Standardized Selection Ratio, Manly et al. 1993). In
bold the preferred anemone host, identified by the higher SSR value for each species

Freq. A. clarkii A. perideraion A. polymnus A. melanopus A. ocellaris A. sandaracinos P. biaculeatus

H. crispa 0.43 0.13 0.48

H. magnifica 0.23 0.52 1.00

S. mertensii 0.17 0.18 1.00

E. quadricolor 0.10 0.04 1.00 1.00

H. aurora 0.03 0.26

S. haddoni 0.03 0.67

M. doreensis 0.01 0.13 0.33

H. malu 0.01 0.26

χ2L 67.84 65.15 57.24 23.13 74.14 42.95 60.13

Sig. *** *** *** ** *** *** ***

Freq relative frequency of anemone host. A: Amphiprion; P: Premnas; H: Heteractis; S: Stichodactyla; E: Entacmaea; M:
Macrodactyla

**p<0.01; ***p<0.001

Table 4 Number of anemones inhabited simultaneously by two anemonefish species (A. = Amphiprion; P. = Premnas)

A. clarkii A. perideraion A. polymnus A. melanopus A. ocellaris A. sandaracinos P. biaculeatus

A. clarkii – 18 1 11

A. perideraion 18 –

A. polymnus –

A. melanopus 1 –

A. ocellaris –

A. sandaracinos 11 –

P. biaculeatus –

Total cohabitations 30 18 0 1 0 11 0

Total hosts occupied 96 92 0 4 0 22 0

Ratio 0.31 0.20 0.00 0.25 0.00 0.50 0.00
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generalist species A. clarkii presented a partial over-
lap with A. sandaracinos (O=0.40), A. perideraion
(O=0.20), A. melanopus and P. biaculeatus (both
O=0.10).

Group composition and anemone size

A positive correlation between anemone area and
anemonefish group numerousness was present in S.
mertensii (considering the total of dominant and
subordinate individuals; r=0.74, p<0.01, n=39), E.
quadricolor (r=0.74, p<0.01, n=22) and H. aurora
(r=0.76, p<0.01, n=8), which hosts only a dominant
species. A lower correlation was detected in H. crispa
(r=0.38, p<0.05, n=97). For H. magnifica and H.
haddoni this correlation was not significant.

Predictability of fish-anemone assemblages

For the Manado data sets, the C-scores and the unique
species combinations were not statistically significant

for either the anemonefish or the host anemones
(Table 7).

Predictability of local and regional interaction
structure

Neither the regional interaction matrix nor any of the
site matrices were significantly nested in structure
when analysed using the NODF algorithm (Table 8).
The same result was obtained using the more
traditional temperature metric T of Atmar and
Patterson (1993) (results not shown).

Discussion

The 7 anemonefish and 8 anemone species observed
in Bunaken coral reefs represent some 27% and 80%,
respectively, of the total known diversity of anemone-
fish and the anemones which host them (Fautin and
Allen 1997; Ollerton et al. 2007). Within sites the

Table 6 Results of the niche-overlap analysis using EcoSim. Values of Pianka’s Index (O) were generated using 5000 iterations of the
null models; see text for details. Pianka’s index varies between 0 (total separation) and 1 (total overlap)

A. clarkii A. perideraion A. polymnus A. melanopus A. ocellaris A. sandaracinos P. biaculeatus

A. clarkii – 0.20 0 0.10 0 0.40 0.10

A. perideraion – 0 0 0.74 0 0

A. polymnus – 0 0 0 0

A. melanopus – 0 0 1.00

A. ocellaris – 0 0

A. sandaracinos – 0

P. biaculeatus –

Table 5 Areas (cm2) of H. crispa and S. mertensii anemones inhabited by two symbiotic anemonefish, both singly and in
cohabitation

N Mean Std. Deviation Minimum Maximum

H. crispa

A. clarkii 39 2845 1290 491 5672

A. clarkii + A. perideraion 18 4307 2206 1256 9499

A. perideraion 74 5082 2787 79 14307

S. mertensii

A. clarkii 17 8882 4221 4416 22687

A. clarkii + A. sandaracinos 11 7532 2940 3847 14307

A. sandaracinos 11 5939 1936 3847 8655
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diversity of anemones and anemonefish can be as
high as 60% (anemones) and almost 20% of the total
diversity of Amphiprioninae. This is clearly a region
of high diversity for this mutualism and compares
with, for example, the assemblage of 9 anemonefish
and 10 host anemones observed by Elliott and
Mariscal (2001) at Madang, Papua New Guinea. The
species richness of anemones and anemonefish across
several sites in the Manado region was not correlated,
such that sites with high anemone diversity may have
low anemonefish diversity and vice versa. However,
because anemonefish are obligate symbionts of the
anemones, and anemone survival is enhanced by the
presence of the fish (Fautin 1991; Godwin and Fautin
1992; Holbrook and Schmitt 2005), all anemones
were observed to contain at least one fish and there
was a strong positive correlation between the numbers
of individual anemonefish and anemones.

Species richness seems not be correlated either
with the typology of reef site, as the 3 sites with
highest richness are a fringing reef on an island
(Bualo), a slow-descending reef slope on the coast
(Tanjung Pisok) and a coastal site with sandy bottom
and reef patches (Bahowo).

Anemonefish of the Manado region have a specific
preferred host, and it was possible to observe some

niche overlaps as showed by the Pianka’s index
(Table 6), leading to a multiple habitat utilisation
which may cause a variable association frequency with
not-preferred host anemones. When the preferred host
was the same, as H. magnifica for A. perideraion and
A. ocellaris, some other factors may determinate
differential use of resources: in our study, A. melano-
pus was exclusively associated with the clonal form of
E. quadricolor, while P. biaculeatus only with the
solitary form (Elliott and Mariscal 2001). Differentia-
tion with depth is a consequence: E. quadricolor forms
colonies only after asexual reproduction, in association
with large colonies of hard branched corals (Acropora
spp. or Porites spp.), that in Bunaken area, due to the
reef conformation, are present only in very shallow
waters. However, depth is not significantly different
between groups then probably also other factors may
be involved in the (partial) niche differentiation, as
predicted by niche theory (MacArthur and Levins
1967). From a phylogenetic point of view, it is
interesting to highlight that closely related species
(E.g. A. perideraion and A. sandaracinos, see Santini
and Polacco 2006) occur on distinct anemone host,
while species living in the same host are phylogenet-
ically distant, as for A. clarkii, P. biaculeatus and A.
melanopus hosted by E. quadricolor.

The observed correlation between anemone area and
group numerousness may result from the effects of area
on the dominant fish size, especially when microhabitat
is occupied by a single social group (Buston 2003;
Buston and Cant 2006). Our observations confirmed a
positive correlation between anemone area and number
of adult fish, as already demonstrated in other studies
(Mitchell and Dill 2005). Only in H. magnifica and S.
haddoni the correlation between area and number of
fish was not significant: probably in these anemones
(the former occupied by A. perideraion or A. ocellaris,
the latter only by A. polymnus) other parameters may
influence the numerousness of the inhabiting anemone-

Table 7 The results of the C-score and Unique species combinations analyses using EcoSim. Probabilities were generated using 5000
iterations of the null models; see text for details

C-score
observed

C-score from
null models

p observed ≥
null model

Unique species
combinations observed

Unique species combinations
from null models

P observed ≤
null model

Anemonefish 7.48 7.32 0.29 (ns) 10.00 11.49 0.14 (ns)

Anemones 4.04 4.02 0.45 (ns) 11.00 10.66 0.82 (ns)

Fig. 6 Mean depth (m ± SD) of sea anemones E. quadricolor
inhabited by three anemonefish species
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fish social group (Richardson 1999). There is also
some evidence that the largest dominant female
anemonefish of some species, which stimulates the
anemone’s growth, could move in a limited reef area
using different anemones as multiple hosts (Kobayashi
and Hattori 2006). It is also possible that the collection
of anemonefish for the aquarium trade could affect the
anemonefish population structure (Shuman et al.
2005); although there is no evidence that this is valid
for the Bunaken area.

Our observations of different anemonefish species
cohabitation in the same sea were consistent with
those of Elliott and Mariscal (2001), asserting that
most derived species may share their anemone with
other species, founding their strategy in the small size.
According to Hattori (2002), also if A. clarkii when
cohabiting with A. perideraion showed a dominant
behaviour because of the bigger size, aggressiveness
and higher mobility (Hattori 1995), the subaltern is a
better competitor in terms of space displacement.
When the anemone area is large, A. clarkii is not able to
control the whole territory permitting A. perideraion
settlement and, gradually, it may prevail on this larger
species (see Table 5): adult specimens of A. clarkii
often transfer from a cohabiting anemone towards a
smaller one probably due to high energetic costs of the
interaction with A. perideraion. A. clarkii, indeed, is
also known as a better disperser compared to other
anemonefish species (Hattori 1995, 2002). A similar
situation may be hypothesized for the cohabitation
among A. clarkii and A. sandaracinos.

The analyses of the C-score [the average number
of “checkerboard units” in which pairs of species
never co-occur (Stone and Roberts 1990)] and of the
number of unique species combinations in the
different sites both strongly suggest that competition
is not an important factor determining the presence or
absence of particular anemonefish/anemone combina-
tions, i.e. fish assemblages in anemone hosts are not
structured by competitive exclusion. It is possible
that, at least in some cases, a stochastic event on a
chronological basis (“who arrives first”) may deter-
mine the presence of an anemonefish in an anemone
for long periods, and not a clear niche differentiation
or a superiority as competitor against other species.
Each species of a guild has similar ecological
requirements and a random probability of using
available resources, unrelated to the numerousness
of the population, theory supported by some obser-
vations of some small Pomacentridae (Sale et al.
1984), fishes with planktonic larval stage, living in a
small territory that may change ownership. However,
for both cohabitation and habitat use results, it has to be
considered that many anemonefish species are able to
inhabit several different hosts present in their territory,
moving between anemone hosts to acquire new
partners or bigger hosts, depending on different factors
as reproductive period, host availability, and develop-
ment (Hattori and Yamamura 1995; Kobayashi and
Hattori 2006) as well as the probably different timing
of larval recruitment for different species. As it was
not possible to assess the temporal stability of this
assemblage, more observations at different temporal
scales are necessary to obtain a more complete overview.

Across the whole of its distributional range and
taxonomic diversity, the anemonefish-anemone nested
interaction is highly statistically significant (Ollerton
et al. 2007; Ollerton unpublished, using the NODF
algorithm). However at both a regional and a local
scale, the interaction between anemonefish and host
anemones is not significantly nested, which confirms
the reanalysis of the interaction data collected from
Madang, Papua New Guinea by Elliott and Mariscal
(2001) (Ollerton et al. 2007). Why this should be so is
not clear, though it may be related to the pelagic
dispersal abilities of fish and anemone larvae, or a
combination of local conditions with competition,
forcing species that regionally are more generalist
(e.g. A. perideraion, A. melanopus, A. ocellaris) to
become more specialist.

Table 8 Results of the nestedness analysis using the ANIN-
HADO software (Guimarães and Guimarães 2006) implement-
ing the NODF algorithm and the null model. Probabilities were
calculated from comparison using 1000 CE null model
simulations

NODF value P

Regional matrix 29.85 0.41

Bahowo 38.49 0.49

Bualo 43.84 0.68

Jalan M 47.03 0.63

Likuan 1 49.59 0.25

Mandolin 32.12 0.79

Mike 46.37 0.77

Sachiko 40.58 0.78

T Kopi 34.83 0.73

T Pisok 35.89 0.86
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Host anemone and anemonefish specialisation (i.e. the
number of interacting partners at each site) is strongly
influenced by the relative abundance of potential hosts.
That is to say, those anemone species which are most
abundant at each site tend to interact with more species of
anemonefish; and conversely, the most abundant anemo-
nefish at a site interact with a wider diversity of anemone
species. This supports the suggestion by Ollerton et al.
(2007) regarding the importance of local population size
“ (…) with abundant species interacting more frequently
with one another”, something which has also been
noted for plant-pollinator mutualisms (Dupont et al.
2003; Ollerton et al. 2003; Vázquez and Aizen 2004)
and for marine cleaner fish relationships (a review in
Floeter et al. 2007).
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