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abstract: The evolution of traits involved in ecological interactions

such as predator-prey, host-parasite, and plant-pollinator interac-

tions, are likely to be shaped by the phylogenetic history of both

parties. We develop generalized linear mixed-effects models (GLMM)

that estimate the effect of both parties’ phylogenetic history on trait

evolution, both in isolation but also in terms of how the two histories

interact. Using data on the incidence and abundance of 206 flea

species on 121 mammal species, we illustrate our method and com-

pare it to previously used methods for detecting host-parasite co-

evolution. At large spatial scales we find that the phylogenetic in-

teraction effect was substantial, indicating that related parasite species

were more likely to be found on related host species. At smaller

spatial scales, and when sampling effort was not controlled for, phy-

logenetic effects on the number and types of parasite species harbored

by hosts were found to dominate. We go on to show that in situations

where these additional phylogenetic effects exist, then previous meth-

ods have very high Type I error rates when testing for the phylogenetic

interaction. Our GLMM method represents a robust and reliable

approach to quantify the phylogenetic effects of traits determined

by, or defined by, ecological interactions and has the advantage that

it can easily be extended and interpreted in a broader context than

existing permutation tests.

Keywords: phylogeny, host-parasite, comparative method, networks,

mammals, fleas.

Most phylogenetic comparative analyses assume that evo-

lution in a focal species is not influenced by evolutionary

change in other taxa (Ives and Godfray 2006; Nunn 2011).

However, for traits involved in ecological processes such

as antagonistic interactions (e.g., interspecific competition

and predator-prey and host-parasite interactions) and mu-

tualistic interactions (e.g., plant-pollinator interactions),

this assumption is unlikely to hold. Indeed, in many cases,

it is hard to classify traits—such as virulence—as being
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the sole property of one species in an ecological interac-

tion.

Dealing with such evolutionary processes requires the

consideration of the phylogenetic histories of both sets of

participants in an ecological interaction, either as main

effects and/or as interactions. To take virulence in host-

parasite systems as an example, we may consider the main

effect of parasite history as one in which related parasites

have similar virulences irrespective of the host they are in,

and we may consider the main effect of host history as

one in which related hosts have similar susceptibility ir-

respective of the parasite that infects them (Morand and

Poulin 2003). However, it is also reasonable to suggest

interaction effects. The most common form of interaction

discussed is usually that between the two histories, which

we call the coevolutionary interaction. Here, related par-

asites are expected to have more similar virulences when

infecting related hosts than when infecting unrelated hosts

even when the average susceptibility of hosts is invariant

(cf. Poulin et al. 2011). However, other types of interaction

are possible. For example, related parasites may have sim-

ilar virulences when infecting a specific set of hosts irre-

spective of whether those hosts are related or not, and also

related hosts may have similar susceptibilities when in-

fected by specific sets of parasites irrespective of whether

those parasites are related or not. For ease, we will refer

to these effects as evolutionary interactions to distinguish

them from the coevolutionary interaction which depends

on the phylogenetic history of both sets of participants.

In some cases, it is only natural to consider the coevo-

lutionary interaction. For example, if the focus of an anal-

ysis is to explore the incidence of parasite species across

hosts, then main effects and the evolutionary interactions

are absent in systems where parasites infect only a single

host and hosts are infected only by a single parasite. In

this case, there is no variation in the parasites’ general

ability to infect hosts, nor is there variation in the hosts’
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general ability to avoid parasitism. Moreover, the set of

parasites infecting each host is of size 1 and unique, so

related hosts cannot harbor more similar parasite assem-

blages than unrelated hosts. Nevertheless, processes such

as cospeciation of parasites with their hosts will naturally

lead to related parasites living on related hosts and the

coevolutionary interaction term becomes important in

predicting the incidence of parasitism. Many methods exist

for analyzing such data (Brooks 1990; Page 1994; Charles-

ton 1998; Huelsenbeck et al. 2000; reviewed in Stevens

2004).

For cases where hosts have multiple parasites and/or

parasites have multiple hosts, fewer methods are available.

Legendre et al. (2002) developed a statistic for measuring

coevolution between hosts and parasites and used per-

mutation to generate a null distribution to which it could

be compared. Similarly, Hommola et al. (2009) developed

an alternative statistic and permutation scheme that could

be considered an extension of the commonly used Mantel

test (e.g., Hafner and Nadler 1990) to situations where

there is not a one-to-one correspondence. However, in

both cases the permuted data are not exchangeable when

main effects and/or evolutionary interaction effects exist.

Such situations may lead to inflated Type I error rates if

the chosen summary statistics depend on patterns gen-

erated by these additional processes. In an alternative non-

parametric approach, Krasnov et al. (2012) used network

analysis to assign host and parasite species to modules by

maximizing the modularity statistic (Newman and Girvan

2004) developed for unipartite networks (see also Fortuna

et al. 2010). The correlation between phylogenetic distance

and the species co-occurrence index was used to measure

phylogenetic signal in community structure. Although the

approach cannot differentiate between a scenario where

both evolutionary interaction effects exist and a scenario

where only the coevolutionary interaction exists, we dis-

cuss it here because it has previously been applied to our

test data set.

In this article, we develop a generalized linear mixed

model (GLMM) approach to overcome some of the dif-

ficulties associated with previous methods. Although our

results are applicable to a wide range of ecological inter-

actions we focus on host-parasite associations and show-

case our method with an analysis of data from 206 parasitic

flea species collected from 121 host mammal species in 51

regions of the Palearctic. We separate patterns of incidence

into three sources of phylogenetic signal: host/parasite spe-

cialism-generalism, host/parasite evolutionary interac-

tions, and the coevolutionary interaction. Independently,

Rafferty and Ives (2013) developed a linear mixed model

of the same form and applied it to plants and their pol-

linators. The work presented here offers new empirical

insights into host-parasite community structure and com-

plements the methodological work of Rafferty and Ives

(2013) by presenting strategies for dealing with non-Gaus-

sian data, spatial replication, and sampling bias. In ad-

dition, we also use simulation to explore the properties of

previously developed methods that test for host-parasite

coevolution effects. We find that when phylogenetic signal

in host/parasite specialism-generalism exists or the evo-

lutionary interaction effects exist, the proposed statistics

and permutation schemes of Legendre et al. (2002), Hom-

mola et al. (2009), and Krasnov et al. (2012) do indeed

result in high Type I error rates. In contrast, the framework

that we present can adequately control for these additional

effects if they are fitted and is still able to identify the

coevolutionary interaction when it exists.

Material and Methods

The Study System

Data were obtained from published surveys that reported

flea distribution and abundance on small mammals (So-

ricomorpha and Rodentia) in 51 different regions of the

Palearctic (data files and analysis scripts are available from

the Dryad Digital Repository, http://dx.doi.org/10.5061

/dryad.jf3tj; Hadfield et al. 2013). These sources provided

data on the number of individuals of a particular flea

species found on a given number of individuals of a par-

ticular host species. In total, 536,000 individuals from 121

mammal species were sampled and 1,692,000 individuals

from 206 flea species. Notably, commensal rodents (Mus

and Rattus) and fleas with cosmopolitan distributions (e.g.,

Xenopsylla cheopis, Nosopsyllus fasciatus) that were likely

introduced to many regions with humans, domestic ani-

mals, and synanthropous rodents were omitted from the

analysis. The same was done for introduced host species

(e.g., Ondatra zibethicus).

Phylogenetic trees of fleas were based on the only avail-

able molecular phylogeny of fleas (Whiting et al. 2008),

which includes 128 flea species belonging to 83 genera.

We used the maximal parsimony version of flea phylogeny

by Whiting et al. (2008). Our data sets included most of

the genera present in the data set of Whiting et al. (2008),

although it was not the case at the species level. Conse-

quently, the positions of flea species that were not rep-

resented in the original tree of Whiting et al. (2008) were

determined according to their morphologically derived

taxonomy (see taxonomic references in Poulin et al. 2006).

Because the only available information on the vast majority

of fleas is limited to brief morphological descriptions and

dichotomous identification keys, within-genus topology

was established according to the subdivision of genera into

subgenera and/or species groups and/or was based on

morphological characters used for identification. All
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branch lengths were arbitrarily set to an equal length of

1, and the tree was made ultrametric using the Mesquite

(Maddison and Maddison 2011) function ultrametricise

(as in Krasnov et al. 2012). In addition we also tested how

robust our results were to alternative trees generated using

different functions for calculating branch lengths (see the

supplementary material, available online). For hosts, we

used the global phylogenetic supertree for mammals of

Bininda-Emonds et al. (2007) as a source of phylogenetic

information (topology and branch lengths; an ultrametric

tree).

The Model

Following Ives and Godfray (2006), imagine an n # m

data matrix Y with rows indexed by n hosts and columns

indexed by m parasites such that is some measuredyik

property of the interaction between host i and parasite k.

Vectorizing Y ( ) Ives and Godfray (2006) de-y p vec(Y)

rived a model for the covariance structure of the data after

conditioning on a set of linear predictors ( ),h p Xb

, up to proportionality:′W p E[(y � h)(y � h) ]

W ∝ U � V, (1)

where is the Kronecker product and�

(p) (p)2(J �A ) (p) 2d � J dp p
U p ,

21 � dp

(h) (h)2(J �A ) (h) 2d � J dh h
V p (2)

21 � dh

are the matrix analogues of equation (A1) of Ives and

Godfray (2006). Term A is a phylogenetic (co)variance

matrix scaled to a correlation matrix, J is a matrix of all

1s (a unit matrix), and d is an estimated parameter which

can take values between 0 and 1. The superscripts (h) and

(p) refer to host and parasite, respectively.

Here we propose two extensions to this model. The first

is to extend the method so that it is explicit about the

distribution of the data, and specifically the incidence data

of our real-world example. The second is to modify and

extend the covariance structure proposed by Ives and God-

fray (2006) so that it is a sum of components that can be

given easier and distinct biological interpretations. The

first extension is made straightforward by introducing the

concept of a latent variable, which is an implicit feature

of GLMM generally (Hadfield 2010). Here, we can con-

sider a matrix of real-valued latent variables L that are

mapped, via the inverse link function, onto the parameters

of a distribution from which the matrix of outcomes (Y)

are assumed to be drawn. In the context of our incidence

data, Y is an incidence matrix such that is 1 if host iyik

is parasitized by parasite k and 0 otherwise, and applying

the inverse-logit transformation to gives the probabilitylik

that . When the outcome is not Gaussian we assumey p 1ik

the covariance structure, W, applies to rathervec(L) � h

than .vec(Y) � h

The second extension is to propose a covariance struc-

ture of the form (see Rafferty and Ives 2013):

(a) 2 (p) (h) 2 (p) (h)W p j (J � A ) � j (A � J )[h] [p]

2 (p) (h) 2 (p) (h)
� j (I � A ) � j (A � I )p[h] [p]h

2 (p) (h)
� j (A � A ), (3)[ph]

where represents variances and I identity matrices of2
j

appropriate dimension. As before we use h and p to des-

ignate host and parasite, and when defining variance com-

ponents, we use square brackets to designate terms that

refer to phylogenetic effects. In order to understand the

implications of this covariance structure it is perhaps easier

to consider the covariance between two specific pairs of

interacting species, host i and parasite k versus host j and

parasite l:

(a) 2 (h) 2 (p) 2 (h)w p j a � j a � j d aik, jl [h] i, j [p] k, l p[h] k, l i, j (4)
2 (p) 2 (p) (h)

� j d a � j a a[p]h i, j k, l [ph] k, l i, j

where is 1 if i and j are the same species and 0 otherwise,di, j

and a is an element of A.

Because the variances are constrained to be positive,

each term makes a nonnegative contribution to the co-

variance and therefore the similarity in outcome between

the two pairs of interacting species. In order to give a

graphical explanation of these terms, we generated a hy-

pothetical phylogeny of 10 hosts and 10 parasites and plot-

ted heatmaps of the covariances that arise from the dif-

ferent processes between all 100 combinations of j and l,

given and (fig. 1). Given the species identitiesi p 8 k p 3

and their phylogenetic relationships, the magnitude of

each contribution is determined by the magnitude of the

associated variance. The first term is the contribution of

the main effect of host phylogeny to the covariance, and

following earlier literature (Vázquez et al. 2005) we refer

to as the variation in parasite species richness (PSR)2
j[h]

explained by the phylogeny (fig. 1a). The second term is

the contribution of the main effect of the parasite phy-

logeny to the covariance, and is the variation in host-2
j[p]

range (HR) explained by the phylogeny (fig. 1b). The third

term is the contribution of the host evolutionary inter-

action to the covariance, and captures the degree to2
jp[h]

which related hosts have similar parasite assemblages ir-

respective of parasite phylogeny (hence the Kronecker

delta, , for parasites; fig. 1c). The fourth term is the con-d

tribution of the parasite evolutionary interaction to the

covariance, and captures the degree to which related2
j[p]h
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Figure 1: Expected patterns of covariance between the outcome for each pair of interacting species and the outcome for the interaction
involving parasite 3 and host 8. Darker shades of gray indicate a greater covariance such that for incidence data darker shades represent a
greater chance of occurrence if parasite 3 is present on host 8.
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parasites have similar host assemblages irrespective of host

phylogeny (fig. 1d). The final term is the contribution of

the coevolutionary interaction to the covariance, and

captures the degree to which related parasites live on2
j[ph]

related hosts (fig. 1e).

In addition, the components in equation (3) all involve

at least one phylogenetic term, but it may be reasonable

to introduce analogous components that only involve non-

phylogenetic terms:

(s) 2 (p) (h) 2 (p) (h) 2 (p) (h)W p j (J � I ) � j (I � J ) � j (I � I ),h p ph

(5)

where we can express the covariance between two specific

pairs of interacting species as

(s) 2 2 2w p j d � j d � j d d . (6)ik, jl h i, j p k, l ph i, j k, l

Here captures interspecific variation in PSR not due to2
jh

phylogeny (fig. 1f), captures interspecific variation in2
jp

HR not due to phylogeny (fig. 1g), and captures as-2
jph

sociations between specific host and parasite species not

due to phylogeny (fig. 1h). It should be noted that for

incidence data is not identifiable unless replicate in-2
jph

cidence matrices have been sampled (e.g., in time or

space).

The most fully parameterized model would therefore

have covariance structure , and the rel-(a) (s)W p W � W

ative importance of each contributing term could be ex-

pressed in terms of intraclass correlations (ICC). For a

Gaussian response this would simply be each variance over

the sum, but for non-Gaussian data, the ICC cannot usu-

ally be expressed so simply and depends on whether it is

to be calculated on the latent scale or the data scale (re-

viewed in Nakagawa and Schielzeth 2010). For Bernoulli

data and logit link the intraclass correlation on the latent

scale for component i is . Under some2 2 2
j /(� j � p /3)i jj

ecological scenarios estimates of the variance components

may be expected to be bound at 0, and a full treatment

of this issue is left for the “Underdispersion” section of

the supplementary materials).

Our model coincides with that of Ives and Godfray

(2006) under three conditions: (a) if only the host phy-

logeny contributes to the covariance ( ) andd p 0 d pp h

, then this is equivalent to a model in which all terms1

are 0 except ; (b) if only the parasite phylogeny con-2
jp[h]

tributes to the covariance ( ) and , then thisd p 0 d p 1h p

is equivalent to a model in which all terms are 0 except

; and (c) if only the interaction contributes to the2
j[p]h

covariance and and , then this is equivalentd p 1 d p 1h p

to a model in which all terms are 0 except . If2
j 0 ![ph]

rather than 1 then the associated phylogeny doesd ! 1

contribute to the covariance although evolutionary change

no longer follows the Brownian motion model and the

increase in variance is not linear in time.

Sampling Effort

An important issue with such data is that Y is in general

not a complete inventory of all interactions and that

greater sampling will usually lead to more interactions

being observed. Indeed, strong relationships between PSR

and the number of individuals of the host species sampled

was evident in our data, as was a strong relationship be-

tween HR and the number of individuals of the parasite

species sampled. However, in this study, sampling effort

will be proportional to the species’ abundance (and trap-

ping probability), and so it is unclear whether these re-

lationships exist solely because of sampling effort or

whether biological processes also contribute, for example,

if common species actually have a greater range of possible

parasites. If parasite counts were available for each indi-

vidual of a host species, then the effects of host sampling

effort and biological variation could be separated because

sampling effects do not result in a positive relationship at

the individual level (all individuals are equally well sam-

pled), whereas the effects of biological variation will often

remain. Unfortunately, the flea counts for each individual

mammal were not recorded and only the aggregate counts

for all individuals of each species in each region are

available.

Moreover, even when the relationships between PSR,

HR, and species abundances are driven solely by sampling

effort, the necessity of controlling for it depends on the

question at hand. On one hand, if the question concerns

differences in possible and impossible interactions then it

is important to control for sampling effort. On the other

hand, if the question concerns the relative frequencies of

different interactions, then the incidence data should be

seen as a (very) coarse measure of interaction frequency,

and sampling effort should not be controlled for. We con-

sider the focus of this study to be the former, and so our

main analysis has the logarithm of region-specific species

abundances fitted as covariates. However, we note that by

doing this, we may also be controlling for biological causes

underpinning the relationships between PSR, HR, and spe-

cies abundances. Whether these relationships have bio-

logical causes is important in this instance because both

host abundance and parasite abundance have reasonably

high phylogenetic signals—phylogenetic heritability (sensu

Lynch 1991): (0.263–0.686) and2 2H p 0.535 H ph p

(0.239–0.522), respectively, suggesting that control-0.395

ling for abundance may alter the magnitude of the host

and parasite phylogenetic signals. A model without the

covariates was also fitted in order to assess the magnitude

of change.
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Spatial Replication

An additional issue of importance with the mammal-flea

data is the fact that they are collected in 51 regions across

the Palearctic rather than in a single region. Rather than

consolidate interactions across regions we chose to retain

this aspect of the data and thus analyze the 51 region-

specific incidence matrices (in fig. 2, we plot the incidence

matrix for the Volga-Kama region, the region with the

highest diversity: 28 mammal species and 35 flea species).

In this model the scalar definitions in equations (4) and

(6) remain identical, but each term in the matrix equations

(eqq. [3] and [5]) must be pre- and postmultiplied by a

design matrix Z relating observations (rows) to host-par-

asite combinations (columns), since each host-parasite

pair may be present in multiple localities. For example,

the covariance due to the coevolutionary interactions

would be

2 (p) (h) ′
j Z(A � A )Z . (7)[ph]

In the model, region effects were also fitted as random

in order to capture any variation in the proportion of

possible host-parasite incidences that are realized. It

should also be noted that when only data from aZ p I

single region is available and equations (3) and (5) are

recovered.

An important decision with such data is how to code

interactions that are not observed because either the host

and/or parasite are not present in a region. One possibility

is to delete the rows/columns of each incidence matrix

that pertain to species not recorded in that region (i.e.,

columns/rows of structural zeros) and our question then

concerns differences in possible and impossible interac-

tions among sympatric hosts and parasites. Alternatively,

these zeros could be treated as real zeros and our question

would then concern differences in possible and impossible

interactions among all hosts and parasites. In this study,

we chose to focus on the former although we acknowledge

that, due to nonexhaustive sampling effort, some of these

structural zeros may in fact be real.

In contrast to separate analyses for each region, this

analysis still utilizes information from between-region pat-

terns in incidence. For example, imagine an ancestral

mammal species (A) that speciated in allopatry giving rise

to species B and C, which continue to live allopatrically.

Imagine then that an ancestral flea species (a) also diverges

and speciates in the same manner, either directly because

of host speciation or because the same ecological and geo-

graphical factors that facilitated host speciation also facil-

itate parasite speciation. In such instances, the presence

of flea b on mammal B in one region is informative about

the probability that flea c lives on mammal C in the other

region. In order to assess how our conclusions would

change by ignoring between-region patterns completely,

we also fitted analyses where all between-region covari-

ances were set to 0. For example, ordering host-parasite

combinations within regions the covariance due to co-

evolutionary interactions has the form

2 51 (p) (h)
j � (A � A ), (8)[ph] kp1 k k

where is the direct sum and is the phylogenetic� Ak

(co)variance matrix for species present in region k. This

model is equivalent to fitting separate models to each re-

gion but under the constraint that the (co)variance pa-

rameters are identical. The term is not however iden-2
jph

tifiable because each host-parasite combination is only

observed once within a region and was omitted from the

analysis.

Model Fitting

We fitted the models using the R (R Development Core

Team 2012) package MCMCglmm (Hadfield 2010) and

ASReml (Gilmour et al. 2002). In both cases it is necessary

to work with the parametrization rather than the�1S

parametrization, where is a phylogenetic (co)variance�1A S

matrix like but with ancestral nodes retained (HadfieldA

and Nakagawa 2010). Although is approximately fourS

times larger than , its inverse is orders of magnitudeA

sparser. Indeed, even storing with(p) h �1(A � A ) , 1 2 #
nonzero elements would require 1.7 Gb of memory at810

double precision compared to the nonzero elements6
! 10

in , which would require 5.5 Mb. Nevertheless,(p) h �1(S � S )

the computing remained slow because of the large data

set and particularly the large product of the phylogeny

dimensions ( ) although the ASReml anal-n # m ≈ 25,000

yses, which use PQL (penalized quasi-likelihood) methods

(Breslow and Clayton 1993), were orders of magnitude

faster than the MCMCglmm analyses, which use MCMC

(Markov chain Monte Carlo) methods. For the Bayesian

MCMC approach, parameter-expanded priors were used

for all variance components to give scaled F-distributions

with numerator and denominator degrees of freedom set

to 1 and a scale parameter of . The chain was run for310

iterations with a burn-in of and a thinning6 510 2 # 10

interval of 400.

Comparison with Other Methods

We calculated the test statistics ParafitGlobal (Legendre et

al. 2002; ), the correlation between host and parasiteSL

shared branch lengths (Hommola et al. 2009; ) andS H

MSEb (Ives and Godfray 2006; ). In the appendix weS I

give the formal definitions of these statistics and show that

and are closely related. In addition, we also followedS SI L

a similar procedure to that in Krasnov et al. (2012)
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Figure 2: Incidence matrix of hosts (rows) and parasites (columns) in a single region (Volga-Kama), with the phylogenies of each plotted
in the margins.

whereby species were assigned to modules by assuming

the graph defined by the incidences is unipartite and then

using the walktrap.community algorithm (Pons and La-

tapy 2005) as implemented in the R package igraph (Csardi

and Nepusz 2006). We then calculated the correlation be-

tween module co-occurrence and host phylogenetic dis-

tance ( ) and parasite phylogenetic distance ( ) fol-S SK Kh p

lowing Krasnov et al. (2012).

We generated null distributions using 1,000 permuta-

tions following the permutation scheme of Legendre et al.

(2002) where rows of Y are permuted within columns and

the permutation scheme of Hommola et al. (2009) where

columns and rows of Y are permuted. The permutation

scheme of Hommola et al. (2009) is such that the empirical

distribution of row/column counts remains unchanged al-

though the species labels are randomized. Consequently

there is potential that the permutations result in a joint

test for host-parasite coevolution, the phylogenetic signal
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of generalism-specialism, and the evolutionary interaction

terms in both hosts and parasites. The permutation scheme

of Legendre et al. (2002) is such that the column counts

remain unchanged but the order and empirical distribu-

tion of row counts are randomized. Thus, there is the

potential of the permutation scheme to be a joint test for

host-parasite coevolution, the evolutionary interaction

terms, and the generalism-specialism of the hosts (irre-

spective of whether it has a phylogenetic signal or not).

Given that assigning hosts to rows and parasites to col-

umns is essentially arbitrary, it should be noted that the

permutation scheme of Legendre et al. (2002) may also

test the generalism-specialism of the parasites rather than

the hosts.

We also calculated all statistics for each region in iso-

lation, the results of which can be found in the supple-

mentary materials. When some host species were present

in a region but had no recorded parasites the resulting

graph has isolated vertices so we removed these hosts when

calculating the module-based statistics and . In ad-S SK Kh p

dition, in some cases all hosts and/or all parasites were

assigned to unique modules such that the correlation is

not defined (because there is no variance in module co-

occurrence).

Simulations Testing PQL versus MCMC

PQL methods (Breslow and Clayton 1993) for fitting

GLMMs can behave poorly for Bernoulli data when there

is little replication within levels of a grouping factor (Bres-

low and Lin 1995). For phylogenies, where the concept of

a group is rather nebulous, the adequacy of PQL is ques-

tionable, but our results suggest that downward biases in

the variance components are substantial, in accord with

observations regarding pedigree analyses (Gilmour et al.

1985). However the speed of PQL over MCMC techniques

is large (nearly 5,000 times faster). In order to verify that

the discrepancies between the MCMC approach and the

PQL approach were not due to programming error, we

simulated 100 data sets using the posterior modes from

the MCMC approach as parameters and refitted the model

using ASReml. Engel and Buist (1998) extend results of

Breslow and Lin (1995) and derive a correction factor for

variance components estimated using PQL when random

effects are correlated through a pedigree. We implement

this for phylogenies and test its adequacy. In the supple-

mentary materials, we provide results for simulating the

interaction effects and computing the correction factor

efficiently. Whether similar results could be employed to

speed up the analyses (Van Loan 2000) remains an open

problem.

Simulations Testing Other Methods

In order to compare our method against the properties of

previously used statistics and permutation tests (Legendre

et al. 2002; Hommola et al. 2009; Krasnov et al. 2012),

we used the smallest simulation scheme of Legendre et al.

(2002) with 10 hosts and 10 parasites. The trees were ran-

domly generated using the rcoal function from the R pack-

age ape (Paradis et al. 2004), and the latent variables were

simulated with zero mean and covariance structure given

by equation (3). The incidence data were simulated from

a Bernoulli distribution with probability equal to the in-

verse logit transformation of the latent variable. Four sets

of parameter combinations were used. In the first we set

all variances to 0 such that all null expectations are sat-

isfied. In the second, we set all variances to 0 except those

pertaining to phylogenetic signal in specialism-generalism

which were set to 4 ( ). In the third, we set2 2
j p j p 4[h] [p]

all variances to 0 except those pertaining to the evolu-

tionary interactions which were also set to 4 ( 2
j pp[h]

), and in the final set all variances were set to 02
j p 4[p]h

except those pertaining to the coevolutionary interaction

( ).2
j p 4[ph]

We generated 500 data sets for each parameter set and

calculated the three test statistics , , and , definedS S SL I H

in the appendix. Significance testing was performed using

the permutation schemes of both Legendre et al. (2002)

and Hommola et al. (2009), as described above. In ad-

dition, three models were fitted to each data set using

MCMCglmm. The first model only included a coevolu-

tionary interaction term, the second model included a

coevolutionary interaction term and phylogenetic main

effects for both hosts and parasites, and the third model

included coevolutionary and evolutionary interaction

terms. Parameter-expanded priors for the variance com-

ponents were used as in the main analyses, but a weakly

informative prior on the intercept (Gaussian with mean

0 and variance ) was also employed because of2/35 � p

instability when the number of incidences was extreme

(190/100 or !10/100). The chain was run for 65,000 it-

erations with a burn-in of 15,000 and a thinning interval

of 50. Although this resulted in rather low effective sample

sizes for the posterior coevolutionary interaction variance

in the third model (∼200), it allowed all models to be

fitted to all data sets in a reasonable amount of time.

Using the mammal-flea data set, Krasnov et al. (2012)

found evidence for host phylogenetic signal, but not par-

asite phylogenetic signal in module membership, suggest-

ing that the host evolutionary interaction was the only

source of phylogenetic effect. Because we found that the

coevolutionary interaction dominated host-parasite inter-

actions (see below), we performed three sets of simulations

identical to those above where all variances were set to 0
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Table 1: Estimates of the intraclass correlations (ICCs; designated as r) from the mammal-flea data

MCMC-a PQL-a MCMC-b MCMC-c MCMC-d

Geographical region .086 (.056–.130) .089∗∗ .062 (.042–.099) .151 (.097–.237) .000 (.000–.060)

Host phylogeny (r[h]) .000 (.000–.083) .012 .062 (.000–.197) .040 (.000–.070) .082 (.032–.164)

Parasite phylogeny (r[p]) .000 (.000–.014) .000 .000 (.000–.043) .000 (.000–.007) .000 (.000–.029)

Host evolutionary

interaction (rp[h]) .114 (.062–.189) .099∗∗ .077 (.028–.124) .226 (.183–.299) .245 (.200–.311)

Parasite evolutionary

interaction (r[p]h) .000 (.000–.009) .000 .000 (.000–.006) .000 (.000–.017) .000 (.000–.013)

Coevolutionary

interaction (r[ph]) .373 (.277–.443) .290∗∗ .333 (.252–.401) .159 (.111–.224) .126 (.080–.178)

Host species (rh) .019 (.000–.034) .016∗ .058 (.029–.105) .036 (.016–.053) .189 (.140–.230)

Parasite species (rp) .000 (.000–.015) .000 .000 (.000–.045) .000 (.000–.008) .077 (.055–.110)

Species interaction (rph) .025 (.000–.051) .000 .016 (.000–.035)

ICC denominator 1.319 (9.241–11.552) 6.657 1.608 (9.434–12.225) 1.135 (8.858–11.597) 15.553 (13.679–18.114)

Note: The Markov chain Monte Carlo (MCMC) columns contain the posterior modes (with 95% credible intervals in parentheses)

for the ICCs, and the PQL column contains the ASReml point estimates. The suffix a refers to the main analysis, and b is an equivalent

model but without controlling for sampling effort; c and d are equivalent models to a and b, respectively, but ignoring between-population

information. Asterisks on the penalized quasi-likelihood (PQL) estimates denote estimates deemed significant.
∗ .P ! .05
∗∗ , using a two-tailed t-test on the approximate Z-score for the variance component.P ! .001

except one (either , , or ). We2 2 2
j p 4 j p 4 j p 4[h] p[h] [ph]

generated 500 data sets for each parameter set and cal-

culated the two statistics and and tested their sig-S SK Kh p

nificance using the permutation schemes of both Legendre

et al. (2002) and Hommola et al. (2009).

Results

Mammal-Flea Data

In the main analysis of the mammal-flea incidence data,

the phylogenetic variances through both the mammal and

flea phylogenies were close to 0, indicating that related

fleas do not have similar host ranges and related mammals

do not have similar levels of parasite species richness.

Whereas the flea evolutionary interaction term was close

to 0, the mammal evolutionary interaction was moderately

large, indicating that related mammals have similar assem-

blages of flea after taking into account the flea phylogeny.

However, the mammal-flea coevolutionary interaction

contributed the greatest variation suggesting that related

fleas tend to be found on related mammals. (These results

are summarized in table 1, MCMC-a.) In the supplemen-

tary materials we show that these conclusions are broadly

similar if we use alternative methods to make the host

phylogeny ultrametric, despite the resulting trees being

quite different (tables S1, S2; tables S1–S8 available

online).

When the model was fitted without controlling for

sampling effort, the ICCs for interspecific variation in

PSR (both phylogenetic [r[h]] and nonphylogenetic [rh])

increased and the ICCs for the mammal evolutionary

interaction and the coevolutionary interaction decreased

(table 1, MCMC-b). However, the coevolutionary inter-

action remained the dominant term. When the model

was focused at smaller geographical scales by ignoring

between-region information the relative importance of

the coevolutionary interaction term dropped below that

of the mammal evolutionary interaction term, although

both had reasonably large ICCs (table 1, MCMC-c).

When sampling effort was not controlled for in the anal-

ysis ignoring between-region information, the results

were broadly consistent with the corresponding full

model in that the magnitude of the main effects increased

substantially and actually exceeded the magnitude of the

coevolutionary interaction term (table 1, MCMC-d).

The ASReml estimates for the ICC were generally

smaller than the MCMC estimates, with the coevolution-

ary ICC in particular being 77.8% that of the MCMC

estimate in the main analysis (table 1, PQL-a). The means

of the estimates from the simulated data were in reasonable

agreement with the ASReml estimates from the actual data,

suggesting that the discrepancy between the PQL and

MCMC approach is primarily due to the known biases for

PQL (table S3). These biases appeared particularly strong

for the model that ignored between-region information

(table S2) presumably because of the reduced amount of

replication per random effect. Indeed, the variance param-

eters were very close to their true values if the latent var-

iable was analyzed as a Gaussian trait (table S3). The cor-

rection factor for the coevolutionary variance parameter

was 1.01, suggesting that the method of Engel and Buist

(1998) may not be useful in this context. Extending results

in Breslow and Lin (1995) and Engel and Buist (1998) to

models with more than one variance component may re-

duce the bias further, although more accurate approxi-
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Table 2: Proportion of tests deemed significant at the .05 level for 500 simulated data sets

Legendre permutations Hommola permutations MCMCglmm

Model Hommola Legendre Ives Hommola Legendre Ives 2 2s &s[p] [h]
2 2s &s[p]h p[h] -

- .044 .048 .062 .052 .058 .062 .000 .000 .014
2 2

j p j p 4[p] [h] .131 .124 .228 .144 .172 .134 .016 .424 .854
2 2

j p j p 4[p]h p[h] .190 .224 .296 .260 .278 .222 .320 .014 .626
2

j p 4[ph] .454 .492 .282 .480 .552 .186 .516 .332 .894

Note: Five hundred data sets were simulated from four different models each defined by equation (3) but with all variances set to

zero except those in the Model column. The test statistics (Hommola et al. 2009), (ParafitGlobal: Legendre et al. 2002), andS S SH L I

(MSEb: Ives and Godfray 2006) were calculated for each data set and significance evaluated using permutation tests with the permutation

schemes used by Legendre et al. (2002) and Hommola et al. (2009). Three MCMCglmm models were also fitted to each data set, each

conforming to the model defined by equation (3) but with all variances set to zero except the variances defined in the subheading and

the coevolutionary interaction variance ( ), all of which were estimated. A lower 95% credible interval greater than 0.01 for was2 2
j j[ph] [ph]

used as the criterion for statistical support of the coevolutionary interaction.

mations to the likelihood such as Laplace approximations

may prove more useful.

Consolidating the data over regions gave S pL

, and , all of which1,115.483 S p 154,325.872 S p 0.025I H

were significantly different from the null distribution un-

der both Legendre and Hommola permutation schemes.

The correlations between module co-occurrence and host

phylogenetic distance ( ) and parasite phy-S p �0.000Kh

logenetic distance ( ), however, were veryS p �0.023Kp

small for the consolidated data, and neither were signifi-

cantly different from the null distribution. The region-

specific statistics were broadly comparable to their global

statistics (after accounting for the dimension changes), and

in most cases, the number of regions in which the statistic

significantly differed from the null distribution consider-

ably exceeded the null expectation of . The51 # 0.05 ≈ 2.5

exception to this rule were the modularity metrics which

showed many highly significant negative correlations be-

tween module co-occurrence and phylogenetic distance for

hosts ( ) but not for parasites ( ), consistent with theS SK Kh h

results presented in Krasnov et al. (2012). The full results

are presented in the supplementary material (table S5).

Properties of Other Methods

To test the properties of the other methods we used various

simulated data sets for which . When all var-m p n p 10

iances were set to 0 ( 2 2 2 2
j p j p j p j p[h] [p] p[h] [p]h

) all statistics under all permutation schemes had2
j p 0[ph]

appropriate rejection rates at the 5% level (first row of

table 2). However, when phylogenetic signal in PSR and

HR was present ( ), all statistics and per-2 2
j p j p 4[h] [p]

mutation schemes gave high Type I error rates ranging

from 0.19 to 0.296 (second row of table 2). When evo-

lutionary interaction effects were present ( 2
j pp[h]

), all statistics and permutation schemes gave even2
j p 4a ps h

higher Type I error rates, with rejection rates ranging from

0.186 to 0.552 (third row of table 2). When only the co-

evolutionary interaction was present ( ), the sta-2
j p 4[ph]

tistics of Hommola et al. (2009; SH) and Legendre et al.

(2002; SL) had comparable power to reject the null hy-

pothesis under both permutation schemes (an average of

49% of cases), but the MSEb statistic of Ives and Godfray

(2006; SI) had lower power (an average of 23% of cases).

Using lower 95% credible intervals greater than 0.01 as

a criterion for supporting the presence of the coevolu-

tionary interaction, the MCMCglmm models found little

support for the coevolutionary interaction when it was

absent and the actual sources of variation were included

in the model ( ≤1.6% of simulated data sets). If the ad-

ditional sources of variation were not modeled, then strong

support was found for the coevolutionary interaction de-

spite it not contributing to the covariances in the data.

When the coevolutionary interaction was present,

MCMCglmm models that included it alone showed strong

support for the coevolutionary interaction (in 89% of

cases), but power was reduced when additional sources of

variation were controlled for despite not being present

(52% of cases when and were estimated and 33%2 2
j j[h] [p]

of cases when and were estimated). However, we2 2
j j[p]h p[h]

note that parameter-expanded priors place high prior den-

sities at extreme values of the ICC (de Villemereuil et al.

2013) and that the small sample sizes and binary data used

in the simulations resulted in the posterior distributions

being sensitive to the prior. The results are more fully

summarized in the supplementary material (table S4), but

focusing on the simulations where data were generated

under a coevolutionary interaction the true ICC, , wasr[ph]

equal to , and yet the means and stan-24/(4 � p /3) ≈ 0.55

dard deviations of the posterior modes for across sim-r[ph]

ulations were when only was estimated,20.66 � 0.26 j[ph]

when and were also estimated and2 20.29 � 0.28 j j[h] [p]

when and were also estimated. More-2 20.31 � 0.34 j jp[h] [p]h

over, the coverage (the percentage of analyses in which the

true value was contained in the 95% credible interval) was
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rather poor in the three cases (88%, 81%, and 90%, re-

spectively) and was less than the expected 95%.

When phylogenetic signal in PSR was present

( ), there was on average a host phylogenetic sig-2
j p 4[h]

nal in community structure ( ,S p �0.092 � 0.013Kh

) but not a parasite signal (P ! .001 S p 0.003 �Kp

, ). When a host evolutionary interaction0.009 P p .721

was present ( ), the host phylogenetic signal was2
j p 4p[h]

strong ( , ) but the parasiteS p �0.268 � 0.013 P ! .001Kh

signal weak ( , ). When aS p 0.014 � 0.008 P p .084Kp

coevolutionary interaction was present ( ), both2
j p 4[ph]

host and parasite phylogenetic signals were strong (S pKh

, and ,�0.232 � 0.014 P ! .001 S p �0.220 � 0.014Kp

).P ! .001

Discussion

In this study, we developed a model-based approach for

characterizing the effects of phylogenetic history on bi-

partite ecological interactions (see Rafferty and Ives 2013).

In particular, we decompose phylogenetic effects into those

associated with each set in isolation and those associated

with interactions between sets. We apply this model to

extensive data on the incidence of mammals and fleas

across the Palearctic. Here, sets are parasites and hosts,

and the phylogenetic effects fall into three categories: a

main effect of host and/or parasite specialism-generalism,

an evolutionary interaction effect where community struc-

ture depends only on host and/or parasite phylogeny in

isolation, and a coevolutionary interaction effect where

communities are structured by the combined effect of host

and parasite phylogenies. We find that the importance of

these different processes depends critically on the geo-

graphical scale at which the analysis is focused and whether

or not sampling effort is controlled for. When sampling

effort is controlled for, we find that at broad geographical

scales, the coevolutionary interaction effect dominates,

suggesting related flea species live on related mammal spe-

cies. At small geographical scales, we find that although

the coevolutionary interaction effect remains, its magni-

tude is considerably reduced, and the host evolutionary

interaction effect is dominant. This effect captures the de-

gree to which related hosts harbor the same sets of parasites

irrespective of parasite phylogeny. When sampling effort

is not controlled for the importance of both host spe-

cialism/generalism (PSR) and parasite specialism/gener-

alism (HR) is elevated since abundant hosts have more

recorded parasites, and abundant parasites are recorded

on more hosts. Since host abundance, and to a lesser extent

parasite abundance, have high phylogenetic signal, this

effect results in greater phylogenetic effects on PSR and

HR. At small geographical scales and without controlling

for sampling effort we find that the combined phylogenetic

and nonphylogenetic effects for PSR are the dominant

processes.

The fact that the coevolutionary interaction was stron-

gest when between-region information was retained sug-

gests that pairs of closely related host/parasites are found,

albeit in allopatry. Although we emphasize that our model

is one of coassociation rather than cospeciation, this find-

ing is consistent with allopatric speciation of both hosts

and parasites but is silent on whether the speciation of

parasites is concomitant with the speciation of hosts. Al-

though the pioneering studies on parasite-host cospecia-

tion (Hafner and Nadler 1988 1990) led to the notion that

cospeciation events are highly prevalent in parasite-host

coevolution, subsequent cophylogenetic studies of host-

parasite associations demonstrated that congruence of

phylogenies is usually not the case and that the shared

history of hosts and parasites is complicated by a variety

of other coevolutionary events (Paterson et al. 1993 2000;

Beveridge and Chilton 2001; Roy 2001). Regarding fleas,

some evidence of flea-host cophylogeny has been derived

from both flea morphology (Traub 1980 1985) and flea-

host biogeographic patterns (Traub 1980 1985; Jameson

1999), but quantitative attempts to reveal whether fleas

have cospeciated with their hosts indicated that related

hosts are mainly parasitized by unrelated fleas and that

current flea-host associations are better explained by eco-

logical and geographic factors (Krasnov and Shenbrot

2002; Liang and Houyong 2005; Krasnov et al. 2012) Our

analyses are broadly in line with these findings in that the

host evolutionary interaction was found to be the domi-

nant term when the between-region information was dis-

carded. Waxman et al. (D. Waxman, L. A. Weinert, and J.

J. Welch, unpublished manuscript) show that this is likely

to be the case if host switches are biased toward closely

related host species and rates of host switching are very

high compared to rates of speciation. Given that wide-

spread correlative (e.g., Roy 2001; Charleston and Rob-

ertson 2002; Davies and Pedersen 2008) and experimental

(e.g., Perlman and Jaenike 2003; de Vienne et al. 2009;

Longdon et al. 2011) evidence already exists for biased

host switching, we suggest that this is likely to be a major

cause of the patterns we observe in the within-region anal-

yses. However, unlike Krasnov et al.’s (2012) analysis of

the same data, we do still find some evidence for the

coevolutionary interaction even at the within-region scale.

Given the limited empirical evidence for both sympatric

speciation (Coyne and Orr 2004) and concomitant host-

parasite cospeciation (de Vienne et al. 2013), it seems likely

that the within-region coevolutionary interaction is gen-

erated by either allopatric speciation followed by secondary

contact and/or host switches occurring between closely

related taxa at rates comparable to speciation rates, re-

sulting in host-shift speciation (de Vienne et al. 2013).
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Waxman et al. (unpublished manuscript) show that host

switching between closely related hosts is expected to result

in higher incidences of parasite species in dense parts of

the host tree, something that is not expected from spe-

ciation models and that could be brought to bear on as-

sessing the relative importance of each process.

We suggest that the discrepancies between our results

and those of Krasnov et al.’s (2012) network analysis are

due to the increased power of our approach for detecting

the coevolutionary interaction and the ability to control

for the phylogenetic main effects that might inflate the

estimates of the host evolutionary effect. The possibility

of phylogenetic signal in PSR inflating the evidence for

host-evolutionary interaction effects in the network ap-

proach was confirmed using simulations and is probably

exacerbated by variation in sampling effort caused by var-

iation in host abundance, which has a relatively strong

phylogenetic signal. More generally, we show that many

other methods for analyzing these types of data do not

distinguish between phylogenetic main effects, evolution-

ary interactions, and the coevolutionary interaction and

as a consequence are susceptible to ascribing a pattern to

a process for which there is little statistical support. For

example, previous methods that test for the presence of

the coevolutionary interaction had Type I error rates of

16% when only phylogenetic main effects existed and 25%

when only evolutionary interaction effects existed. Al-

though our approach had Type I error rates closer to the

nominal 5%, we acknowledge that getting precise estimates

of the contribution of each process to the global pattern

will require extensive data collected on a large number of

host species and parasite species. Even for moderate-sized

data sets it may prove difficult to separate all effects (Wax-

man et al., unpublished manuscript), and care must be

taken to understand and explain the impact that particular

choices of prior and model structure have on any

inferences.

In this article we have focused on a very specific ap-

plication of our method; binary data from a host-parasite

system. However, the approach is applicable to a range of

data types and could be applied fruitfully to a range of

quantitative measures of interaction strength, such as par-

asite replication rate, host fecundity, host growth rate, and

immune gene expression. Moreover, the approach can be

used to analyze the outcomes of any bipartite ecological

interactions where interacting species can be placed in

disjoint sets that are reciprocally monophyletic. Indeed,

while this article was in revision, Rafferty and Ives (2013)

published an equivalent model and applied it to plant-

pollinator interactions, and Henry et al. (2013) have ap-

plied a similar model to understand the distribution of

host-symbiont interactions. Extending the approach to

unipartite interactions, such as interspecific competitive

interactions, may prove difficult because the tractability of

likelihood-based comparative methods depends on con-

ditional independence whereby two daughter species

evolve independently given their ancestor (Felsenstein

1985; Freckleton 2012). Given that causes of noninde-

pendence such as character displacement are likely to be

the focus of models of interspecific competition, we sug-

gest that a GLMM framework may be difficult to imple-

ment for such scenarios (but see Ives and Helmus 2011).

Nevertheless, we envisage plenty of opportunities for mod-

eling numerous ecological systems with this method, and

we hope that the richer class of models that we and Rafferty

and Ives (2013) present should allow researchers to ask

more nuanced questions of their data in a more robust

way.
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APPENDIX

Derivations of Coevolutionary Interaction Metrics

For the appendix and supplementary material, four matrix

identities will be useful: (i) ,′vec(CBA ) p (A � C)vec(B)

(ii) , (iii) ,′ ′tr(AB) p vec(A )vec(B) tr(AB) p 1(A , B)1

and (iv) , where is the′(C , ab )d p a , C(b , d) ,
Hadamard product.

Relationships between Former Models

Legendre et al. (2002) use the metric tr(D′D) where

D p L′(h)YL(p), L is a matrix of principal coordinates

of J � A and tr is the trace operator. However, if we take

L to be the nonnormalized eigenvectors of A�1, then

using (i) we find vec(D p ) and using (ii)′(p) ′(h)(L � L y)

we obtain tr(D′D) p
′ (p) (h) ′(p) ′(h)y (L � L )(L � L )y p

. If is mean cen-′ (p) ′(p) (h) ′(h) ′ p h �1y (L L � L L )y p y (A � A ) y y

tered, then is proportional to the mean sum of′tr(D D)

squares of Ives and Godfray (2006) under a pure Brownian

model with ( ). The constant of pro-d p d p 1 MSEh p b
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portionality does not depend on(h) n (p) m(FA F FA F )/(nm � 1)

the data.

Hommola et al. (2009) create two matrices,N # N

and , where N is the number of interactions. Term(h) (p)C C

is the element of corresponding to the hosts(h) (h)c J � Ai, j

in interaction i and j, and is the element of(p) (p)c J � Ai, j

corresponding to the parasites in interaction i and j. Their

statistic is the correlation between the elements in the

upper triangles of and . It should be noted that(h) (p)C C

the distance matrix can be replaced with and theJ � A A

resulting statistic is identical.
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“Everything indicated that the mouse was perfectly dead, excepting the fact that it was not as rigid as perhaps a dead mouse would be
in the winter.... By holding it in my hand and thus warming it, the mouse soon began to show signs of life, and although it was nearly
the whole day in coming back to activity, at last it was as lively as ever, and afterward, on being set free in the room, it moved about so
swiftly by means of its long leaps, that it required two of us a long time to capture it uninjured.” From “Hibernation of the Jumping
Mouse” by Sanborn Tenney (The American Naturalist, 1872, 6:330–332).
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