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ABSTRACT
Large-scale anthropogenic developments in the metropolitan areas of Nepal and the rural to urban influx of people have exacer-
bated human–wildlife conflicts across human-altered landscapes of Nepal. The Kathmandu Valley has experienced large-scale 
urbanization and has subsequently witnessed substantial incidents of human–wildlife conflicts given the increasing levels of 
human encroachment into remnant wildlife habitats. Here, we applied DNA metabarcoding in combination with geospatial 
analysis to study the feeding ecology of two urban carnivores, the leopard (Panthera pardus) and the leopard cat (Prionailurus 
bengalensis), in the forests surrounding the Kathmandu Valley and to check whether the leopards' predation on domestic animals 
contributes to human-leopard conflict in this region and to obtain a baseline data on the dietary habits of the poorly studied 
leopard cat. We found that leopards were highly dependent on domestic animals in areas dominated by human-use activities 
(agricultural and built-up areas), whereas leopard cats mostly predated on wild rodents. Through our work, we highlight the 
importance of domestic prey in the diets of urban carnivores like leopards and demonstrate the influence human-induced habi-
tat disturbance has on the ecology of local wildlife. This study generates critical information which will help to inform conflict 
mitigation strategies and conservation planning for the two carnivore species, in addition to identifying areas within the region 
that are susceptible to human–wildlife conflicts.

1   |   Introduction

Human–wildlife interactions occur when humans and wild-
life encounter one another, often resulting in positive or 

negative consequences for humans, wildlife, and their resources 
(Dickman 2010; Nyhus 2016; Soga and Gaston 2020). Negative 
interactions are commonly labeled as human–wildlife con-
flict, impacting either or both parties adversely (Conover 2001; 
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Nyhus 2016). From a social science perspective, distinguishing 
between negative impacts and true conflicts becomes crucial, 
involving conflicting perceptions about wildlife management 
(Athreya et  al.  2020). Recognizing this, the integration of so-
cial science perspectives has gained significance. It not only 
emphasizes the need to study human–wildlife interactions 
and their impacts but also addresses conflicting perceptions, 
providing more effective management recommendations. In 
this context, we term the conflict between humans and wild-
life, encompassing actions adversely affecting either party and 
perceived threats to human life, property, livestock, and eco-
nomic security, as human–wildlife conflict. In the developing 
world, human–wildlife conflict results from the expansion of 
anthropogenic development into natural habitats and wildlife 
species' increased adaptability to human-dominated landscapes 
(Macdonald and Sillero-Zubiri 2002; Manfredo 2015; Anand and 
Radhakrishna  2017). Habitat fragmentation, reducing natural 
areas and prey populations, increasing habitat edges, and sub-
dividing contiguous patches often increases negative human–
wildlife interactions (Laurance  2000; Broadbent et  al.  2008; 
Acharya et al. 2017).

Across much of Asia, leopards (Panthera pardus) and leopard 
cats (Prionailurus bengalensis) exhibit extensive distribution 
ranges due to their adaptability in habitat selection (Nowell and 
Jackson 1996; Shehzad et al. 2012; Bashir et al. 2014; Henschel 
et  al.  2015; Pokharel  2015; Laguardia et  al.  2017). According 
to the IUCN Red List, leopards are classified as “Vulnerable” 
(Stein et al. 2024), whereas leopard cats are listed as “Least con-
cern” (Ghimirey et al. 2023). Leopards, particularly susceptible 
to conflicts with humans due to their large home ranges and 
ability to prey on livestock (Macdonald and Sillero-Zubiri 2002; 
Athreya et al. 2016; Nyhus 2016), have adapted well to human-
dominated landscapes, even inhabiting major cities like 
Mumbai and Bengaluru (Athreya et  al.  2016; Gubbi, Sharma, 
and Kumara 2020). These factors contribute significantly to the 
heightened human–leopard conflict in South Asian countries 
such as Sri Lanka, India, and Nepal over the past two decades 
(Fernando  2016; Anand and Radhakrishna  2017; Adhikari 
et  al.  2020). In Nepal, where the human–leopard conflict has 
intensified, the leopard, an apex carnivore, is the largest felid 
in the mid-hills topographic regions (Acharya et al. 2016). The 
leopard cat, although of lesser concern, is treated as a pest spe-
cies due to its predation impact on the poultry sector across its 
distribution range (Kumara and Singh 2007; Jnawali et al. 2011; 
Rai et al. 2018).

In addition, Nepal's largest metropolitan area, the Kathmandu 
Valley, has undergone significant land-use changes over the past 
three decades due to extensive human migration (Ishtiaque, 
Shrestha, and Chhetri  2017; Rimal et  al.  2017). Most leopard 
research in Nepal has focused on protected areas (Thapa 2011; 
Koirala et al. 2012; Maharjan, Shahnawaz, and Shrestha 2017), 
leaving a gap in understanding the species outside these areas, 
which constitute over 60% of their habitat and often overlap 
with human-use zones (Jnawali et al. 2011; Adhikari et al. 2020; 
Kandel, Lamichhane, and Subedi 2020). The ecology of the elu-
sive leopard cat is poorly known, especially in human-modified 
habitats (Shehzad et  al.  2012), complicating the assessment of 
habitat transformation threats (Mohamed et al. 2013). Anecdotal 

records alone are insufficient for addressing critical ecological 
questions.

Diet analysis, particularly through scat analysis, offers 
vital insights into predation patterns (Klare, Kamler, and 
Macdonald  2011). Although morphological identification has 
been the traditional approach, genetic-based diet analysis or 
DNA metabarcoding is gaining prominence. The precision of 
morphological identification can be limited due to observer 
bias and difficulties in distinguishing closely related species or 
identifying undigested prey parts (Casper et al. 2007; Mumma 
et  al.  2016; Gosselin, Lonsinger, and Waits  2017; Granquist 
et al. 2018). This shift may impact research quality, potentially 
hindering the development of effective management and con-
flict mitigation strategies in affected regions.

In our study, we focused on assessing leopard diets to under-
stand their potential role in driving human–leopard conflict 
in the forests surrounding the Kathmandu Valley, aiming to 
aid the authorities in developing effective conflict mitigation 
strategies. Additionally, we investigated the foraging ecology 
of leopard cats to establish a baseline of their diet ecology in 
this human-modified area alongside leopards. Employing 
non-invasive genetic sampling and next-generation sequenc-
ing, proven successful in similar studies (Shehzad et al. 2012; 
De Barba et al. 2014; Biffi et al. 2017), we determined carni-
vore dietary habits. Simultaneously, through geospatial analy-
sis, we characterized land cover types and habitat disturbance 
in the forests surrounding the Kathmandu Valley. This land-
scape characterization enables us to pinpoint areas potentially 
more susceptible to human–leopard encounters. Our compre-
hensive approach contributes valuable insights for wildlife 
management, aligning with the broader goal of fostering har-
monious coexistence between humans and carnivores in this 
dynamic landscape.

2   |   Materials and Methods

2.1   |   Study Area

We conducted the study in forested areas around the hills or 
mountains (1300–2700 m above sea level) of the Kathmandu 
Valley (approx. 800 km2, 27.5500° N to 27.8500° N and 
85.1700° E to 85.5300° E, Figure 1), which lie in the mid-hill 
topographic region of Nepal. It is a part of the Mahabharata 
range that parallels south of the Himalayan range. The val-
ley bifurcates to form a bowl-shaped basin and is the main 
historical financial hub of Nepal, housing the metropolitan 
areas of Kathmandu, Bhaktapur, and Lalitpur districts. It is 
one of the fastest-urbanizing regions in South Asia (Ishtiaque, 
Shrestha, and Chhetri 2017). The mountain forests surround-
ing the valley include a national park and numerous commu-
nity forests. Community forestry in Nepal began in the late 
1970s to involve local people in forest management, aiming to 
improve livelihoods through the sustainable use of forest re-
sources (Kanel 2004). We conducted scat surveys in six major 
forest patches (Shivapuri-SH, Nagarjun-NJ, Nagarkot-NK, 
Phulchoki-PH, Chandragiri-CH, and Indradaha-ID; Figure 1) 
for 1–2 weeks at each site during October 2018 to June 2019. All 
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study sites except SH and NJ are managed under the commu-
nity forestry system of Nepal. SH and NJ are two non-adjoining 
sectors of the Shivapuri Nagarjun National Park (SNNP), 
which is the only national park lying completely within the 
mid-hills topographic region of the country. Deciduous veg-
etation of subtropical and temperate climates dominates the 
natural habitat in the hill forests. The valley base stands at 
an elevation of approximately 1300 m above sea level (asl) and 
the peaks reach approximately 2800 m above sea level. The 
mean annual rainfall in the valley is about 1505 mm, with a 
prolonged monsoon season from June to September, and av-
erage annual temperatures fluctuate between 15°C and 29°C.

The Kathmandu Valley is one of Nepal's most populated urban 
centers with over 2 million people, housing approximately 10% 
of the country's population, even though it accounts for less 
than 1% of Nepal's total area (CBS 2012). Since 1989, urban areas 
have expanded by 412% due to the large-scale rural-to-urban 
migration of people into the Valley (Ishtiaque, Shrestha, and 
Chhetri 2017; Rimal et al. 2017). Beyond the city fringes lie the 
cultivated lands, gradually transforming into peri-urban settle-
ments that have encroached into wildlife habitats and are now 
spreading close to the remaining forests of the surrounding hills 
(Haack and Rafter 2006; Ishtiaque, Shrestha, and Chhetri 2017). 

The expanding nature of human-influenced disturbance en-
croaching into natural habitats has been one of the primary 
causes of rising human–wildlife conflict in this region and be-
yond (Acharya et al. 2017).

2.2   |   Field Collection and Predator Species 
Identification of Carnivore Scats

Most of our field sampling involved opportunistic searches 
for wild carnivore scats along ridgelines, hill slopes, ravines, 
and gullies across the mountain forests. We navigated a total 
of 243 km of transects through hiking trails, game trails, fire 
lines, and off-road tracks. Each scat sample was collected in 
two tubes (2 mL and 50 mL). We swabbed the surface of the 
scats with sterile cotton swab sticks and stored them in 2 mL 
tubes containing DET buffer. Additionally, we collected a 
subsample (~2 g) in 50 mL tubes with DET buffer. The DET 
buffer was adapted from Wultsch et al. (2015) for fecal DNA 
preservation of felids. For scat age classification, we followed 
the method of Jackson and Hunter (1996), sampling only re-
cent to fresh carnivore scats. Each sample tube was labeled 
with a unique identifier, and additional metadata (e.g., GPS 
coordinates, scat diameter, scat age) was recorded for each 

FIGURE 1    |    Spatial distribution of leopard and leopard cat fecal samples collected from the six noncontiguous forest patches (our study areas) sur-
rounding the Kathmandu Valley, Nepal. Different land cover classes in the broader Kathmandu region are shown. The roads represent the major road 
network only, that is, primary and secondary roads (SNNP—Shivapuri-Nagarjun National Park, SH—Shivapuri, NJ—Nagarjun, ID—Indradaha, 
CH—Chandragiri, PH—Phulchoki, and NK—Nagarkot).
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scat sample. In the field, the samples were stored at ambient 
temperature before being transported to the laboratory, where 
they were kept in a −20°C freezer.

We processed all fecal samples collected in 2 mL tubes for pred-
ator species identification. We turned around the swab, centri-
fuged at 5000 RPM for 1 min, followed by the elution of 600 μL 
supernatant in a clean collection tube, before continuing to the 
DNA extraction procedure using the QIAamp Stool Mini Kit 
(Qiagen, Germany) following the manufacturer's protocol. We 
included negative extraction controls during each extraction 
procedure.

To identify leopard samples, we developed a species-specific 
PCR assay with primers designed to specifically target a ~200 
bp region of the mitochondrial cytochrome b gene in leopards 
(Table S1). For primer design, reference sequences from leopards, 
other felids, and carnivores were retrieved from NCBI GenBank 
to identify regions uniquely conserved in leopard sequences. 
The primers were tested on samples alongside a leopard-positive 
control, and leopard identification was confirmed by visualizing 
PCR bands through gel electrophoresis. To ensure the accuracy 
of the newly developed leopard-specific PCR assay, a subset of 
leopard-positive samples was further validated through Sanger 
sequencing.

For nonleopard fecal samples, we performed species identifica-
tion using DNA barcoding by amplifying and sequencing a ~412 
bp barcoding region of the cytochrome b gene using the univer-
sal primers mcb398-f and mcb869-r (Verma and Singh  2003). 
The resulting sequences were compared against the NCBI 
GenBank database using BLAST, applying a 97% nucleotide 
identity threshold to confirm species identity.

2.3   |   Prey Profiling Using DNA Metabarcoding

2.3.1   |   Library Preparation 
and Next-Generation Sequencing

We extracted whole DNA for all confirmed leopard and leopard 
cat scats from their replica 50 mL tube for vertebrate prey profil-
ing. We vortexed the tube, followed by centrifuging at 5000 RPM 
for 1 min, and finally eluting 600 μL of supernatant in a clean 
Eppendorf tube. We then performed DNA extraction using the 
QIAamp Stool Mini Kit (Qiagen, Germany) following the man-
ufacturer's protocol.

Next, we followed a two-step PCR protocol described by Miya 
et al.  (2015). In the first PCR, the vertebrate prey DNA con-
tained in predator scats is amplified, whereas in the second 
PCR, unique oligo-indices (barcodes) for each individual scat 
sample are attached to the amplified products of the first PCR, 
in order to allow for multiplexing the library. We amplified a 
short barcoding region (~100 bp) of the 12S rRNA gene of verte-
brate mtDNA using the universal vertebrate primers 12SV5F 
and 12SV5R (Riaz et al. 2011). Both primers were tagged with 
the Illumina overhang sequences to allow subsequent an-
nealing of index primers incorporated with unique barcoding 
indices and Illumina sequencing flowcell adapters. We also 
included a blocking oligonucleotide that reduces amplification 

of host predator (leopard) DNA (Shehzad et  al.  2015; see 
Table  S1). This assay profiles all vertebrate prey DNA con-
tained in predator scat.

For the first PCR, we used modified 12SV5 primers that had ran-
dom hexamers and overhang oligonucleotide sequences in the 
5′ region. The hexamers were included to enhance cluster sepa-
ration during initial base call calibrations on the sequencer. We 
performed first-round PCR in a total reaction volume of 25 μL 
containing 12.5 μL 2x KAPA HiFi HotStart ReadyMix (Kapa 
Biosystems, USA), 0.25 μL of each modified 12S gene-specific 
primer (12SV5F/12SV5R), 2 μL template DNA, 6.25 μL block-
ing primer, and 3.75 μL H2O. We then performed initial dena-
turation of the PCR mastermix at 98°C for 3 min, followed by 
35 cycles of 94°C for 30 s, 63.5°C for 30 s, 72°C for 30 s, and 72°C 
for 5 min.

For the second PCR, we indexed the first round PCR products 
of each sample using unique Illumina indices from Nextera 
XT Index Kit V2 (Illumina, USA) to allow multiplexing of the 
library during sequencing. The indexing primer contained 
complementary oligonucleotides that enhanced annealing to 
the overhang sequence in the first round PCR product, along 
with unique indices and Illumina sequencing adapters. We 
performed the second PCR in a total reaction volume of 50 μL 
containing 25 μL 2x KAPA HiFi HotStart Ready Mix, 5 μL of 
forward and reverse Nextera XT Index primers, 5 μL template 
(first PCR product), and 10 μL H2O. We performed initial de-
naturation of the PCR mastermix at 95°C for 3 min, followed 
by 8 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, and 
72°C for 5 min.

We cleaned the final amplicons using AMPure XP magnetic 
beads. We quantified libraries with the Qubit dsDNA HS assay 
kit (Thermo Fisher Scientific, USA), followed by normalization 
(4 nM) for loading in the sequencer. We performed paired-end 
(2× 150 bp) sequencing (loading concentration 10 pM) on an 
Illumina MiSeq instrument using a 300-cycle MiSeq Reagent 
Kit v2 (Illumina Inc., USA) that generated demultiplexed 
fastq sequence reads of each sample by MiSeq Reporter v2.6.4 
application.

2.3.2   |   Sequence Data Processing and Taxonomic 
Identification

The quality of the raw DNA sequence reads (fastq files) from 
Illumina MiSeq (Illumina Inc., USA) was assessed using FastQC 
v0.11.9 (Andrews et  al.  2010). Subsequently, Trimmomatic 
v0.39 (Bolger, Lohse, and Usadel  2014) was employed to re-
move adapter sequences, followed by trimming reads shorter 
than 95 bp and those with low quality (Q-score < 20). Using the 
metabarcoding pipeline QIIME2 v2021.4 (Bolyen et  al.  2019), 
paired-end reads were further refined to eliminate various se-
quencing artifacts and correct potential PCR and sequencing 
errors based on error models. This denoising step, performed 
using the DADA2 plugin, involves removing sequencing errors 
and low-quality bases, merging paired-end reads, and identify-
ing and eliminating chimeric sequences. This process generates 
clean, unique sequences known as amplicon sequence variants 
(ASVs).
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Only ASVs belonging to the target taxa (i.e., vertebrate) were 
used for further analysis. Nontarget ASVs were filtered out 
using BLAST similarity searches against the Vertebrate 12S ref-
erence database, compiled and curated from NCBI GenBank. 
The remaining target ASVs were classified to their taxonomy 
levels using a consensus BLAST algorithm within QIIME2's 
feature-classifier function. The consensus taxonomy was as-
signed from among the maximum 50 hits returned by BLAST, 
with a minimum of 51% consensus required for classification. 
BLAST analysis parameters included a query coverage of 85% 
and a nucleotide percentage identity of 97%. The ASVs were 
clustered into operational taxonomic units (OTUs), which pro-
vide a closer relation to the species concept and are more robust 
than the traditional approach of clustering OTUs before taxo-
nomic assignment.

Based on the consensus taxonomy classification, the OTUs were 
assigned to various taxonomic levels, including species, genus, 
family, and so on. The OTU table was further filtered using 
the minimum read threshold derived from the negative control 
sample included in the sequencing run. We calculated relative 
abundance for all samples based on taxa and created a presence/
absence table using the criterion that the prey would be assigned 
as present if the relative abundance was greater than 1%, thus 
further filtering out rare sequencing artifacts. Additionally, 
OTUs classified only up to the family level and those that re-
mained unassigned were excluded from downstream analysis to 
improve interpretability.

2.3.3   |   Statistical Analyses of Dietary Data

We also reported the percent occurrence (PO) for each prey 
item to determine the abundance of each item in the diet of 
the leopard and leopard cat. We defined it as PO = s/N, where 
s is the number of occurrences of specific prey items and N is 
the total occurrences of all prey items in all scat samples of the 
leopard and leopard cats (Khatoon et al. 2019). PO reveals how 
important a prey item is in the diet, but it often overestimates 
the importance of small prey because it measures the frequency 
with which prey appears in a predator's diet but does not ac-
count for the biomass contribution (Ackerman, Lindzey, and 
Henker 1984). Thus, we also calculated the percentage of scats 
containing each prey species, that is, frequency of occurrence 
(FO) as an additional metric.

We calculated the dietary niche breadth of the two carni-
vores using the standardized Levins index. It is measured as 
Bsta = (1/∑pi2)−1/(n-1), where pi is the relative frequency of 
prey items consumed by predator p and n is the total number 
of prey items ingested (Levins 1968; Marshall and Elliott 1997; 
Briers-Louw and Leslie 2020; Palei et al. 2022). Values closer to 
zero indicate specialist predators, and those closer to one indi-
cate generalist species.

We then conducted principal component analysis (PCA) in 
R v3.6.2 (R Core Team  2019) implemented in R Studio v1.2 
(RStudioTeam 2019) using the presence/absence data of the prey 
items in the carnivore scats and grouped them into various taxa, 
mostly based on the order and class of the prey items. PCA is an 
eigenvector-based multivariate analysis that creates a simplified 

summary of existing patterns in the data set. Linear combina-
tions of the original variables are produced, thus reducing the 
dimensionality of the original multivariate data and retaining 
only the most important information (Abdi and Williams 2010). 
We conducted multiple linear regression with the first principal 
component scores as the response variable and forest patch and 
predator species as two explanatory variables. Using the same 
response and explanatory variables from the gplots package 
v3.0.1.1 (Warnes et al. 2019) in R, we used the plotCI function 
to visualize the mean reliance of the two carnivore species on 
domestic prey items in the region by plotting a 95% confidence 
interval plot. We defined reliance on domestic prey items based 
on how commonly domestic prey items occurred in leopard and 
leopard cat scats.

2.4   |   Geospatial Analyses of Carnivore 
Feeding Habits

2.4.1   |   Land Cover Mapping

We represented the land cover classes in the study area at a 
spatial resolution of 30 m using the Transverse Mercator pro-
jection in ArcGIS v10.7.1 (ESRI; Redlands, CA, USA). The 
most recent mapping of land cover in Nepal was conducted by 
Uddin et  al.  (2015) for the International Centre for Integrated 
Mountain Development (ICIMOD). In order to update the map, 
we added an additional built-up area as mapped by the Global 
Urban Footprint project (Esch et  al.  2017) and as mapped on 
OpenStreetMap. We define ‘built-up’ area as any space where 
human development has occurred, including the urban and 
rural fabric, except for agricultural areas. Similarly, we merged 
the OpenStreetMap waterways raster with the ICIMOD 2010 
water layer. We then overlaid the above updated built-up and 
water layers with the ICIMOD 2010 land cover data set. This re-
vised land cover data set gave us a more up–to-date presentation 
of the land cover classes in the region.

2.4.2   |   Assessing Habitat Disturbance

To quantify the extent of habitat disturbance around the car-
nivore scat collection points, we estimated the proportions 
of the major land cover classes, namely forest, agricultural 
(farmlands mostly containing food crops like grains, po-
tato, and mustard), and built-up area within five buffer radii 
(1000/1500/2000/3500/4500 m). We chose these buffer radii 
based on the average home range sizes of leopards and leopard 
cats in human-dominated landscapes across Asia (Miller 2011; 
Mohamed et  al.  2013; Odden et  al.  2014). Furthermore, to 
closely examine the habitats that the two carnivores occupy, 
we calculated the distance of each scat from the nearest forest 
edge, that is, the boundary between the forest and any other 
land-use type.

We used FRAGSTATS v4.2 (McGarigal and Ene  2015) to de-
termine the extent of forest fragmentation in the study region. 
Class-level indices in FRAGSTATS can quantify the extent of 
habitat fragmentation for each of the land cover classes, espe-
cially the forest class (McGarigal and Marks  1995). We chose 
six class metrics (Table  S2) based on previous studies that 
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similarly assessed landscape fragmentation (Southworth, 
Munroe, and Nagendra 2004; Miyamoto and Sano 2008; Midha 
and Mathur 2010). We adopted the eight-neighborhood cell cri-
terion for defining the land cover class patches and fixed an 
edge depth of 100 m to assess the edge density and mean core 
area, based on previous research (Laurance  2000; Broadbent 
et al. 2008; Midha and Mathur 2010).

We saved the major land cover raster layers as GeoTIFF files 
and used them as input for the fragmentation analysis. The 
fragmentation metrics were computed at three scales—the en-
tire study area, the six major forest patches, and 1000 m around 
the scat collection locations. We chose 1000 m as the neighbor-
hood as it showed the most statistically significant difference 
from the other buffer radii (independent two-sample test, p 
value = < 0.05).

Next, we used the values obtained for each class-level metric run 
for the corresponding forest patches to determine the degree of 
habitat fragmentation in the forest patches located 1000 m 
around the scat collection locations. We ranked the values of the 
six metrics and calculated a median from the six metric ranks 
for each forest patch. We classified the lowest scoring medians 
as areas with low fragmentation, middle values as moderately 
fragmented, and highest scoring medians as highly fragmented 
forests.

To assess the effect of habitat disturbance in the study area on 
the diets of the two carnivores, we conducted multiple linear re-
gression. We used (1) the proportion of forests 1000 m around 
the scats, (2) the distance of scats from the nearest forest edge, 
and (3) the degree of forest fragmentation measured 1000 m 
around the scats as the explanatory variables and the first prin-
cipal component scores from the PCA as the response variable.

We also analyzed the proportion of forest, agricultural, and 
built-up areas located 1000 m around the carnivore scats con-
taining cattle (Bos taurus) and those without cattle. The purpose 
of this analysis was to understand the land cover type prevalent 
in the areas where the scats were found. We chose to focus the 
analysis on cattle since it was the most abundant domestic prey 
species in leopards' diets.

2.4.3   |   Potential Human-Leopard Conflict Hotspots

The concept of Wildland–Urban Interface identifies heteroge-
neous spaces that are often more susceptible to incidences of 
wildfires, habitat fragmentation, biodiversity decline (Radeloff 
et  al.  2005; Massada et  al.  2009; Biasi et  al.  2015) and in this 
case, human-carnivore conflict. We therefore used Forest–
Built-up and Forest–Agricultural interfaces to represent areas 
that are likely to be more susceptible to human–leopard conflict.

We used ArcGIS v10.7.1 (ESRI; Redlands, CA, USA) to create 
binary layers of the forest, agriculture, and built-up classes. 
In the Focal Statistics tool, we individually selected the three 
binary layers and adopted a circular neighborhood of 150 m, 
based on the average distance of leopard activity away from for-
ests (Dahat  2013; Kulkarni  2016; Viollaz  2016; Reporter  2019; 
Joseph 2020). In Raster Calculator, we used the multiplication 

operator that multiplies the values of raster layers on a cell-by-cell 
basis to multiply the forest and agricultural binary layers and to 
multiply the forest and built-up binary layers. We thus generated 
the Forest–Agricultural Interface and Forest–Built-up Interface. 
We then produced the Forest–Agricultural–Built-up interface 
by multiplying (i.e., intersecting) the Forest–Agricultural and 
Forest–Built-up interfaces.

3   |   Results

3.1   |   Species Identification

We collected 57 scat samples across the hills of the Kathmandu 
Valley, of which 20 (35%) samples were from SNNP (SH, n = 14; 
NJ, n = 6), whereas the remaining 37 (65%) were from ID (n = 2), 
CH (n = 14), PH (n = 18), and NK (n = 3) forests. Among these, we 
could not identify two samples due to PCR failure (these were 
degraded samples collected during the monsoon period). Out of 
the remaining 55 samples, we identified 25 (45.5%) as leopards. 
Leopard scats had an average of 3.3 cm (range 2.8–4 cm) diame-
ter, in addition to key felid scat features like segmented texture 
and a tapered end at one side. Among the remaining samples 
that were not leopards, we identified 26 (47.3%) as leopard cats. 
Scats of leopard cats had an average diameter of 1.7 cm (range 
1–2.5 cm). Last, the remainders (7.2%) were identified as yellow-
throated marten (Martes flavigula, n = 2) and large Indian civet 
(Viverra zibetha, n = 2).

Among the 25 scats of leopard, we identified 10 from PH, seven 
from SH, four from CH, three from NK, and one from NJ. We 
also detected leopard scats in ID, but we did not collect them as 
they were very old (more than a month) and dried out. Similarly, 
among the 26 scats of leopard cats, we identified nine from CH, 
seven from SH, six from PH, and two each from ID and NJ. The 
two scats of yellow-throated marten and large Indian civet were 
collected from PH and NJ, respectively.

3.2   |   Diet Profiles of Leopards and Leopard Cats

Out of 25 leopard scats, five did not pass the quality control 
steps during library preparation and were rejected from further 
processing. The remaining 46 scat samples (leopard, n = 20 and 
leopard cat, n = 26) generated a total of 4,678,852 reads (mean 
per sample: 101,714; range: 18,511–207,627 reads) using a DNA 
metabarcoding approach.

From the 20 leopard scat samples processed for diet analysis, 
we identified 13 vertebrate prey taxa and a total of 37 prey items 
(Table  1). Based on the percent occurrence of each food item 
per total food items, we found that the leopard diet was mostly 
dominated by ungulates (PO = 59.5%) which mainly consisted 
of cattle (PO = 24.3%) and barking deer (Muntiacus vaginalis, 
PO = 16.2%). Birds, mainly represented by domestic fowl or 
chicken, also constituted a substantial portion (PO = 18.9%) of 
the leopard diet. This was followed by rodents (PO = 17%), which 
consisted mainly of mice (Mus spp) and porcupines (Hystrix 
spp.). Occurring in 16 of 20 scats (80% of scats), domestic prey 
comprised nearly half (51.4%) of the leopard diet, whereas wild 
animals occurred in 12 of 20 scats (49%).
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Of the 26 scat samples of leopard cats processed for diet analysis, 
we identified 15 prey taxa among 76 total prey items (Table 2). 
We found that the leopard cat diet was primarily dominated by 
rodents (PO = 76.3%) in terms of percent occurrence, with at least 
six genera identified. Niviventer spp. (PO = 25%) followed by Mus 
spp. and Rattus spp., both PO = 21.1%, were the most important 
prey in their diet. Other prey, such as ungulates (PO = 10.5%), 
birds (PO = 5.3%), shrews, and fishes (both PO = 3.9%), also 

TABLE 1    |    Diet composition of leopards in the forests around the 
Kathmandu Valley. Here, %PO is the percent occurrence of the prey 
in the scats and %FO is the percentage of scats containing each prey 
species.

Prey type/order/
species

%PO 
n = 20

%FO 
n = 20

Approximate 
prey weight 

(kg)

Domestic

Ungulates

Cattle (Bos taurus) 24.32 45 167

Goat (Capra hircus) 8.11 15 26

Sheep (Ovis aries) 2.70 5 27

Carnivores

Dog (Canis lupus 
familiaris)

2.70 5 12

Birds

Domestic fowl 
(Gallus gallus)

13.51 25 0.78

Wild

Ungulates

Barking deer 
(Muntiacus 
vaginalis)

16.22 30 18

Sambar deer (Rusa 
unicolor)

5.41 10 212

Wild boar (Sus 
scrofa)

2.70 5 38

Primates

Rhesus macaque 
(Macaca mulatta)

2.70 5 6

Birds

Eagle (Aquila spp) 2.70 5 3

Kalij pheasant 
(Lophura 
leucomelanos)

2.70 5 0.89

Rodents

Mouse (Mus spp.) 13.51 25 0.5

Porcupine (Hystrix 
spp.)

2.70 5 1.5

TABLE 2    |    Diet composition of leopard cats in the forests around 
the Kathmandu Valley. Here, %PO is the percent occurrence of the prey 
in the scats, and %FO is the percentage of scats containing each prey 
species.

Prey type/order/
species

%PO 
n = 26

%FO 
n = 26

Approximate 
prey weight 

(kg)

Domestic

Ungulates

Cattle (Bos taurus) 1.32 3.85 167

Wild

Rodents

Bandicoot rat 
(Bandicota spp.)

2.63 7.69 0.58

Giant pouched rat 
(Cricetomys spp.)

3.95 11.54 1.25

Mouse (Mus spp.) 21.05 61.54 0.5

Niviventer rat 
(Niviventer spp.)

25.00 73.08 0.08

Rattus rat (Rattus 
spp.)

21.05 61.54 0.15

Giant flying squirrel 
(Petaurista spp.)

2.63 7.69 1.65

Shrew

Brown-toothed 
shrew (Episoriculus 
spp.)

3.95 11.54 0.01

Birds

Hill partridge 
(Arborophila 
torqueola)

1.32 3.85 0.31

Wheatear (Oenanthe 
spp.)

1.32 3.85 0.02

Puff-throated 
babbler (Pellorneum 
ruficeps)

1.32 3.85 0.03

Kalij pheasant 
(Lophura 
leucomelanos)

1.32 3.85 0.89

Fish

Carp fish (Ptychidio 
spp.)

1.32 3.85 2.5

Snowtrout 
(Schizothorax spp.)

2.63 7.69 2.5

Ungulates

Barking deer 
(Muntiacus 
vaginalis)

9.21 26.92 18
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8 of 17 Ecology and Evolution, 2025

occurred in their diet. Domestic prey only occurred in 1 of 26 
(1.3%) leopard cat scats, whereas wild animals occurred in 25 of 
26 (98.6%) scats, and therefore, wild prey dominated the leopard 
cat diet.

Levin's standardized dietary niche breadth of leopards was rela-
tively wider (Standardized Levins Index = 0.18, n = 20) than that 
of leopard cats (Standardized Levins Index = 0.07, n = 26). We 
found leopards to be more reliant on domestic prey compared 
with leopard cats across all the surveyed forests (Figure 2). The 
multiple regression analysis revealed that the two predictor vari-
ables (specific forests and predator species) explained 80% of the 
variance for the response variable (the first principal component 
scores) (R2 = 0.80, F (6.39) = 26.47 p = 2.579e-12). The degree of 
reliance on domestic prey was different both between predators 
(two-way ANOVA, F = 118.877, N = 46, df = 1, p = 5.868e-13) and 
between forest patches (two-way ANOVA, F = 13.588, N = 46, 
df = 5, p = 1.800e-07). We also found the interaction term be-
tween forest patches and predators to be statistically significant 
(two-way ANOVA, F = 3.292, df = 3, p = 0.03143), which further 
explains that leopards relied more on domestic prey across all 
forests.

3.3   |   Extent of Habitat Fragmentation

Of the total study area, 51% consisted of human-used land, that 
is, 30% agricultural and 20.8% built-up (Figure  1). However, 
only 46% of the land was covered by forests, most of which were 

fragmented. Shrubland, grassland, barren land, and water bod-
ies comprised the remaining 2.8% of the land cover. Given below 
are the results of the forest fragmentation analysis (Table 3 and 
Figure  3). Further details of the metrics are also provided in 
Tables S2 and S3.

3.3.1   |   Patch Density and Mean Patch Area

Our findings of the patch density of the entire study area and of 
the six forests suggest that forest land had been subdivided into 
many patches. We found that ID had the lowest mean patch area 
(13.52 ha), whereas NJ and CH had the highest mean patch areas 
with corresponding low patch densities; this implies that ID was 
most fragmented.

3.3.2   |   Edge Density, Mean Shape Index, and Mean 
Core Area

ID obtained the highest edge density, whereas the lowest value 
was obtained by NJ. All the surveyed forests had irregular 
shapes, and their mean shape index values were greater than 
one which implies fragmentation. Except for ID, we found that 
all the other surveyed forests recorded a mean core area > 50% of 
the corresponding mean patch area. As the amount of core area 
represented is affected by the shape, our findings suggested that 
the edge effect was relatively low in the five forests surveyed, 
with ID as an exception.

FIGURE 2    |    Reliance of leopards and leopard cats on domestic prey across the surveyed forests of the Kathmandu Valley, Nepal. The positive and 
negative values on the y-axis signify high and low reliance of the carnivores on domestic prey species, respectively. Scats of leopards and leopard 
cats were not collected from ID and NK, respectively. (CH—Chandragiri, ID—Indradaha, NJ—Nagarjun, NK—Nagarkot, PH—Phulchoki, and 
SH—Shivapuri).
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3.3.3   |   Mean Euclidean Nearest Neighbor Distance

NJ had the greatest distance, which indicates that its forest 
patches were located relatively farther away from each other in 
comparison to the other forests examined. The nearest neighbor 
distance of the forests in the entire study area was 99 m; this 
explains that the forest patches across the study area were not 
contiguous with one another.

The fragmentation metric values obtained for the forest class 
1000 m around the 46 carnivore scat collection locations were 
consistent with the above findings (Table  3). Overall, all six 
major forest patches show signs of varying degrees of habitat 
fragmentation, especially ID, where the forest was most frag-
mented (Table 3).

3.4   |   Effect of Habitat Disturbance on 
the Carnivores' Feeding Ecology

Based on multiple linear regression, the three explanatory vari-
ables of habitat disturbance (proportion of forests 1000 m around 
the scats, distance of scats from the nearest forest edge, and 
level of forest fragmentation 1000 m around the scats) explained 
32% of the variance for the response variable (the first princi-
pal component scores) (R2 = 0.32, F (3,42) = 6.59, p = 0.0009). We 
found no statistically significant effect of habitat disturbance on 
the dietary habits of the two carnivore species (Table S4).

However, we found a statistically significant difference be-
tween scats that had cattle (n = 10) and those without cattle 
(n = 36) when the percent cover of the three major land cover 
classes within a radius of 1000 m around the scats was analyzed 
(Figure 4). Scats with cattle were located within areas with less 
forest cover (84.7% compared with scats without cattle 93.3%; 
p < 0.05), more agricultural area (13.8% compared with scats 
without cattle 5.4%; p < 0.05), and more built-up area (0.7% com-
pared with scats without cattle 0.3%, however, this was statisti-
cally insignificant).

3.5   |   Interfaces Predicting Potential 
Human–Leopard Conflict Hotspots

The Forest–Built-up Interface made up 41% (39,397 ha) and the 
Forest-Agricultural Interface comprised 48% (45,301 ha) of the 
total landscape. Based on the concept of Wildland-Urban Interface, 
the Forest–Agricultural–Built-up Interface representing the over-
all areas likely most susceptible to human–leopard conflict made 
up 39% (37,525 ha) of the total study area (Figure  5). These het-
erogeneous areas were identified along the outskirt or peri-urban 
regions of the Kathmandu Valley and are the potential hotspot re-
gions where encounters between humans and leopards are high.

4   |   Discussion

In this study, we employed DNA metabarcoding to gain in-
sights into the feeding behaviors of two felid species inhabit-
ing the forests surrounding an urbanized area. Our focus was 
primarily on the significance of domestic prey in the diet of 
leopards and leopard cats within a human-dominated land-
scape, while also examining the relationship between the 
dietary habits of urban leopards, urbanization, habitat frag-
mentation, and conflicts in the Kathmandu Valley. To achieve 
this, we utilized a DNA-based method to noninvasively iden-
tify predator species from scat samples. The metabarcoding 
approach enabled us to profile the vertebrate prey taxa more 
accurately compared to previous studies, which predom-
inantly relied on traditional microhistological techniques 
(Achyut and Kreigenhofer 2009; Koirala et al. 2012; Kandel, 
Lamichhane, and Subedi 2020). In ecosystems where multiple 
carnivores cooccur and compete for similar resources, relying 
solely on traditional scat identification techniques may result 
in misidentification and misinterpretation of both predator 
and diet profiles. Our field-collected scats were identified as 
belonging to leopards, leopard cats, martens, and civets using 
DNA-based species identification. Habitat fragmentation re-
sulting from rapid urbanization in Kathmandu (Ishtiaque, 
Shrestha, and Chhetri 2017; Rimal et al. 2017), which appears 

TABLE 3    |    Level of forest fragmentation based on 1000 m neighborhood around carnivore scat collection points (n = 46) and the quantities 
of domestic and wild prey eaten by the predators. The median rank ranges (1–46; lowest to highest fragmentation) were derived by ranking the 
fragmentation metric values of each surveyed forest followed by calculating the median from the ranks obtained. The median rank for each forest 
area is the median calculated from the median rank range for the corresponding forest.

Forest
Fragmentation 

level

Median 
rank 
range

Median 
rank

Leopard diet (n = 20) Leopard cat diet (n = 26)

No. 
of 

scat

No. of 
domestic 

prey

No. of 
wild 
prey

No. 
of 

scat

No. of 
domestic 

prey

No. of 
wild 
prey

Shivapuri Low–moderate 1 to 39 8.5 7 8 6 7 0 18

Nagarjun Moderate 11 to 39 11 1 0 1 2 0 5

Chandragiri Moderate 11 to 39 22 2 3 1 9 1 33

Phulchoki Moderate 11 to 39 28.5 7 5 9 6 0 13

Indradaha High 40 to 46 41.5 NA NA NA 2 0 6

Nagarkot High 40 to 46 45 3 3 1 NA NA NA

Note: NA—no leopard and leopard cat scats were collected from Indradaha and Nagarkot, respectively.
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to be haphazard and unplanned, has impacted biodiversity, es-
pecially in the context of carnivore-associated conflicts such 
as those observed with leopards in the area. Our study delved 
into this complex interplay by integrating carnivore diet data 
with geospatial analysis, aiming to elucidate the correlation 

between various geographic features and carnivore feeding 
ecology. This comprehensive approach allowed us to evaluate 
the profound effects of habitat fragmentation on the foraging 
behaviors of two carnivore species in the urban ecosystem of 
Kathmandu.

FIGURE 3    |    Fragmentation class metric values for the six forests. (a) Patch density, (b) edge density, (c) mean patch area, (d) mean shape index, (e) 
mean core area, (f) mean Euclidean nearest neighbor distance (SH—Shivapuri, NJ—Nagarjun, ID—Indradaha, CH—Chandragiri, PH—Phulchoki, 
and NK—Nagarkot).
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4.1   |   Urbanization Influences the Human–Leopard 
Conflicts in Kathmandu

Leopards are generalist predators, adept at subsisting on vari-
ous prey in their habitat, allowing them to adapt to changing 
environments (Hayward et al. 2006). Our study showcases that 
despite the low Levin's dietary niche breadth i.e., far from 1, 
which indicates a high dietary specialisation, the leopards in 
the Kathmandu Valley have a wide variety of prey species, sug-
gestive of the generalist feeding habits usually associated with 
leopards. Large felids like leopards are known to specialize in 
preying on medium- to large-sized vertebrate species, often 
feeding for multiple days on a single prey animal to conserve en-
ergy expenditure during consecutive kills (Elbroch et al. 2017; 
Barry et al. 2019). Such might also be the case in the Kathmandu 
Valley, where a single dead, large-sized animal like a cow can 
provide multiple, entire meals to leopards in the area. Despite 
the relative generalist feeding habits of leopards in our study 
area, we did observe that the majority of the leopard's prey con-
sisted of medium- and large-sized ungulates, including bark-
ing deer (wild prey) and cattle (domestic prey) (Table 1). While 
leopards are known to prey on livestock, it remains uncertain 
whether they actively hunt or scavenge stray cattle or domesti-
cated cattle owned by humans.

The reliance on domestic prey was evident across all study sites, 
except for ID, from which we did not have any leopard samples 
(Figure  2). ID, characterized by high levels of fragmentation 
(Table 3 and Figure 3), posed challenges in finding fresh sam-
ples due to rapid land-use changes, such as deforestation, land 
plotting, road cutting, and urban development activities that 
occurred during the study period. Despite these challenges, we 
discovered a few old scats in the ID forest, which may indicate 
that leopards were temporarily displaced due to the high level of 
disturbance. However, we did not collect these samples due to 
the expected DNA degradation in such old-aged samples. Most 

of our study sites are managed under the community forest sys-
tem, which is not federally protected, thereby allowing various 
levels of land-use or developmental activities within these forest 
patches. Interestingly, in the SH sector of SNNP, our study re-
vealed domestic prey reliance among leopards, which was sim-
ilarly exhibited in CH, NJ, and NK (Figure 2). Leopards mainly 
depend on prey availability and mostly prefer medium-sized 
ungulates (10–40 kg) where available, aligning with their gener-
alist feeding habits (Hayward et al. 2006; Stein, Bourquin, and 
McNutt 2015). The evident reliance of leopards on domestic prey 
species in SH can be attributed to the presence of longstanding 
villages within SH, where livestock such as cattle, goats (Capra 
hircus), and chickens (Gallus gallus) are commonly raised and 
graze alongside wild prey species in SNNP. The adaptability 
of leopards to domestic prey, including cattle, goats, dogs, and 
poultry (chickens), in Kathmandu's evolving urban landscape 
likely contributes to increased encounters and conflicts with 
humans, which has been outlined clearly in a semi-structured 
survey by Bista et al.  (2021). This adaptability-driven human–
leopard interaction emphasizes the need for informed manage-
ment strategies to address the conflicts effectively.

Building upon prior observations that briefly touch on the rise of 
human–leopard conflict incidents may be due to habitat fragmen-
tation in Kathmandu (Pokharel 2015), our findings shed light on 
how this fragmentation over recent decades due to urbanization 
drives changes in carnivore diets. Specifically, we observed a 
trend where leopards increasingly preyed on cattle, particularly 
in areas characterized by high levels of heterogeneous land-
scape features, that is, a mix of forest, agricultural, and built-up 
land (Figure 4). This shift toward domestic prey aligns with the 
general pattern seen in human-dominated regions (Kshettry, 
Vaidyanathan, and Athreya  2018; Kumbhojkar et  al.  2021), 
where the abundance of domestic animals often surpasses that 
of wild prey (Schaller 1983). A study even found only domestic 
prey in the leopard diet, where there was probably no wild prey 

FIGURE 4    |    Percent land cover within 1000 m around carnivore scats containing cattle and those without cattle.
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12 of 17 Ecology and Evolution, 2025

present in the forests (Shehzad et al. 2015). Kathmandu also faces 
a unique problem with its stray cattle population, mainly due to 
domestic cows being protected under federal law against slaugh-
ter for meat. This protection leads to people abandoning old-aged 
cows and male calves (unfit for dairy purposes) in the outskirts 
of the valley. Much of the stray cattle may have become the staple 
diet for leopards, as evidenced by our study samples (Table 1).

The ongoing transformation of land use in Kathmandu Valley, 
coupled with such anthropogenic factors allowing ample avail-
ability of domestic prey such as stray cattle, likely contributes to 
the decline in wild prey species like barking deer. This decline 
is due to the degradation of forest areas and resource competi-
tion with domestic animals. As a result, resilient predators like 
leopards are forced to rely more on domestic prey, which are 
abundant and lack the anti-predator adaptations of their wild 
counterparts (Geffroy et al. 2020), making them easier targets 
for predation. Although the specific population and density of 
wild prey in Kathmandu's forests are unknown, the prevalence 
of cattle in the leopard's diet provides valuable insights into 
these ecological dynamics. Overall, our study underscores the 
intricate relationship between habitat fragmentation, driven 
by urbanization, and its cascading effects on carnivore feeding 
behaviors and biodiversity dynamics in urban ecosystems like 
Kathmandu. In addition to stray cattle, Kathmandu also harbors 

an abundant population of stray dogs mainly along the dense city 
areas (Kakati 2012), which constitute an important prey source 
for urban leopards elsewhere (Surve et al. 2015). However, our 
analysis detected dog remains in only one leopard scat sample 
among 20 analyzed. This limited detection could be attributed 
to our sample size and the fact that our sampling sites were pri-
marily located near the edges of forest areas along peri-urban 
regions on the outskirts of the cities, dissociated from densely 
populated human settlement regions where urban leopards are 
known to frequently hunt and prey upon dogs. Future research 
endeavors in Kathmandu should consider expanding sampling 
efforts to encompass the forested regions, peri-urban, and urban 
areas. Such an approach would provide a more comprehensive 
understanding of the dietary preferences and profiles of urban 
leopards, particularly in relation to their interactions with do-
mestic animals like stray dogs and cattle. This expanded scope 
would contribute significantly to our knowledge of carnivore 
ecology in urbanized landscapes like Kathmandu.

4.2   |   Dietary Niche of Leopard Cats Highlights Its 
Adaptable Nature

Leopard cats weigh around 4–7 kg, and unlike their larger compet-
itors, exhibit a specialized dietary preference primarily centered 

FIGURE 5    |    Forest–Agricultural–Built-up (FAB) interface (i.e., areas predicted to have higher frequency of human–leopard encounters in the 
landscape) in the Kathmandu Valley, Nepal. Star-marked scats symbolize carnivore scats with cattle (n = 10; leopard = 9, leopard cat = 1) (SH—
Shivapuri, NJ—Nagarjun, ID—Indradaha, CH—Chandragiri, PH—Phulchoki, and NK—Nagarkot).
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around small mammals, especially rodents, as evidenced by diet 
studies from various regions (Rajaratnam et al. 2007; Shehzad 
et al. 2012). Our study confirms this specialization, noting that 
leopard cats in our area exhibit a narrower dietary niche rela-
tive to leopards, with rodents being a major dietary component 
(Table 2). However, it is worth noting their dietary flexibility, as 
they also consume small birds like passerines and galliformes, 
fish, and even ungulates to supplement their diet.

Notably, leopard cats pose minimal conflict in urban settings 
compared to their larger competitors. An average adult leopard 
cat cannot target medium-large livestock or pose direct threats 
to human safety. Instead, given their specialization in a rodent 
diet, they may indirectly contribute to pest rodent management, 
particularly in agricultural outskirts, benefiting farming com-
munities (Williams et  al.  2018). However, they are often mis-
takenly accused of poultry predation, leading to unnecessary 
actions like retaliatory trapping or killings in rural areas (Rai 
et  al.  2018). Our study, through metabarcoding-based dietary 
analysis, found no evidence of chicken predation (Table 2), as op-
posed to its detection in a leopard's diet (Table 1), dispelling mis-
conceptions and promoting informed decision-making during 
conflict scenarios related to livestock predation. However, this 
should be considered with caution given our low sample size, 
and such decisions need to be made with informed evidence.

Leopard cats may supplement their diet with occasional scav-
enging of ungulate carrions left by leopards in our study areas. 
Cattle was detected in one sample from CH, whereas barking 
deer was found in seven samples, collected from CH, PH, SH, 
and NJ, because it will be impossible for small felids like leop-
ard cats to bring down juvenile to adult cattle and adult barking 
deer, with the exception of juvenile barking deer. However, the 
fawns are usually under the direct protection of their mother 
doe, making it difficult for them to predate. Such an ecological 
dynamics emphasizes the role of apex predators as ecosystem 
engineers in providing meals to small carnivore communities, 
as outlined by Elbroch et al. (2017) in their study on mountain 
lions (Puma concolor) in the USA. Various small carnivore 
guilds, including felids, mustelids, and viverrids, benefit from 
such carrions, eventually enhancing overall biodiversity.

We also found leopard cat scats very close to those of leopards, 
with one scat right above a leopard's scat. Such behavior sug-
gests the interspecies interaction in an ecosystem. Leopard cats, 
being subordinate to large predators in their habitat, including 
leopards, may fear scavenging on carrions (Ruprecht et al. 2021) 
left by the leopards. However, there must be some spatiotempo-
ral separation between these carnivores (Can et al. 2020), which 
helps the subordinate ones avoid confrontation or being killed 
by their larger competitors. Such interspecies behavior will also 
be interesting to study in future research, providing more infor-
mation on the co-occurrence of the carnivores in forests affected 
by urbanization and habitat fragmentation.

5   |   Concluding Remarks

Our study highlights leopard's feeding ecology impacting hu-
mans and livestock in the Kathmandu Valley, where forests 
intersect with human-use areas. This situation underscores 

leopards' increasing reliance on domestic animals, creating 
conflict-prone hotspots. Mitigating these conflicts is crucial to 
safeguard human lives and their livestock. Additionally, leop-
ards and other carnivores can offer public health and economic 
benefits, such as reducing dog bites, lowering sterilization pro-
gram costs, and decreasing road accidents (Gilbert et al. 2017; 
Braczkowski et  al.  2018). Smaller predators, like leopard cats, 
play a major role in the food chain involving small mammals 
like rodents, benefiting local agriculture (Williams et al. 2018). 
Recognizing these benefits can foster positive attitudes toward 
carnivores, contributing to their conservation and conflict re-
duction. However, as leopards prey on domestic animals and 
indirectly help manage stray populations, it raises concerns 
about disease transmission between domestic animals and leop-
ards, as these domestic animals bear numerous disease-causing 
pathogens and parasites (Thapa, Parajuli, and Dhakal  2022; 
Adhikari et  al.  2023; Adhikari, Dhakal, and Ghimire  2023; 
Manandhar et al. 2023; Sadaula et al. 2024). This poses health 
risks to leopards and potentially influences their populations. 
Habitat disturbance, fragmentation, prey depletion, and increas-
ing encounters with humans due to anthropogenic factors like 
urbanization may further exacerbate the stress levels of urban 
leopards, as has been observed in Bengal tigers (Panthera tigris) 
in India (Bhattacharjee et al. 2015; Tyagi et al. 2019), potentially 
affecting their population viability. Future studies should evalu-
ate stress, reproductive physiology, diseases, and genetic health 
status of leopards to understand the impact of anthropogenic 
factors on urban leopards. Furthermore, undertaking sex-id 
tests to ascertain the sex of the predators that produced the scats 
and increasing the sample size would contribute to a more com-
prehensive understanding of the carnivores.

Addressing issues arising from human–wildlife habitat overlaps 
requires a multifaceted approach. Public education and aware-
ness are critical in fostering tolerance and understanding of the 
ecological roles of leopards and other carnivores. Promoting the 
benefits of carnivore presence, such as controlling stray animal 
populations and reducing public health risks, can help shift 
public perception (Braczkowski et al. 2018). Additionally, policy 
interventions and urban planning must prioritize wildlife con-
servation by creating green corridors and buffer zones to reduce 
the effects of habitat fragmentation on wildlife. In conclusion, 
our research provides a baseline overview of the challenges faced 
by leopards in urbanized regions like the Kathmandu Valley. By 
addressing habitat fragmentation, reducing conflicts, and fos-
tering positive public attitudes, we can work towards sustainable 
coexistence with leopards and other carnivores. Ensuring the 
conservation of leopards will support broader biodiversity goals, 
benefiting various species within their ecosystems. Effective 
urban planning and informed wildlife management decisions 
are essential to achieve these objectives, ultimately securing a 
harmonious future for both humans and wildlife.
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